The flavor physics program of Belle II

周启东(ZHOU Qi-Dong) Institute of Frontier and Interdisciplinary Science, Shandong Univ. On behalf of Belle II Collaboration

23-27 Oct. 2023 The 2023 international Workshop on the High Energy Circular Election Positron Collider

New physics search based on collider

- New physics (NP) beyond the Standard Model
 - What made the matter-antimatter asymmetry of the Universe?
 - What is dark matter?

Indirect search for NP in quantum effect

New particle

• Sensitivity of NP detection up to 200 TeV for loop diagram (depending on the NP coupling constant) <u>arXiv:1309.2293</u>

d Model ymmetry of the Universe?

Luminosity frontier: SuperKEKB

- Asymmetric e+e- collider
 - $e^+e^- \rightarrow \gamma(4S) \rightarrow B\overline{B}$
 - very clean and well-known initial state

Beam current: KEKB x ~1.5

Beam squeeze: KEKB / ~20

Positron source target Target: $L = 60 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- Data at γ (4S):
 - 362 fb⁻¹ (Belle II) <-> 711 fb⁻¹ (Belle)³

The Belle II detector

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C_2H_6 (50%), small cells, long lever arm

ElectroMagnetic Calorimeter (ECL) CsI(TI) + waveform sampling

Features:

- Near-hermetic detector

'GeV)

• Good at measuring neutrals, π^0 , γ , $K_{L...}$ $\sigma(E)/E \sim 2-4\%$

Particle Identification

Barrel: Time-Of-Propagation cou (TOP)

Forward: Aerogel RICH (ARICH)

K_L/μ detector (KLM)

(4GeV)

Outer barrel: Resistive Plate Co (RPC)

Endcap/inner barrel: Scintillator

• Vertexing and tracking: σ vertex ~ 15µm, CDC spatial res. 100µm $\sigma(P_T)/P_T$ ~ 0.4%

unters	
ounter r	

Belle II physics program

$$\begin{array}{l} \textbf{CKM matrix and} \\ V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{cs} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A^2 \lambda^3 (1 - \rho - \lambda) \end{pmatrix} \\ \end{array}$$

- A triangle on the complex plane
- Normalization by $\bar{\rho} = \rho(1 \frac{\lambda^2}{2})$ $\bar{\eta} = \eta(1 \frac{\lambda^2}{2})$
 - Search NP in mixing (tree, loop) by precise measurement of UT Comprehensive test
 - Measure all sides and angles 6

UT angle measurements $(\overline{\rho},\overline{\eta})$ α/ϕ_2 Β→ππ, ρρ $B \rightarrow J/\psi K_s \beta/\phi_1$ $\gamma/\phi_3 B \rightarrow DK$ (0,0) (0,1)

Time dependent CPV

$$A_{CP} = \frac{\Gamma(\overline{B}^{0}(t) \to f_{CP}) - \Gamma(B^{0}(t) \to f_{CP})}{\Gamma(\overline{B}^{0}(t) \to f_{CP}) + \Gamma(B^{0}(t) \to f_{CP})} = Ssin$$

Measurement of $sin(2\phi_1)$

- $b \rightarrow c$: tree diagram dominated golden modes $B^0 \rightarrow J/\psi K_{s^0}$, $B^0 \rightarrow \psi(2S)K_{s^0}$...
- Theoretical and experimental precise channel

$$P(\Delta t, q) = \frac{e^{-|\Delta t|\tau_{B^0}}}{4\tau_{B^0}} (1 + (1 - 2w)q[Ssin(\Delta m\Delta t)])$$

- **S** : indirect CPV parameter, $\sim \sin(2\phi_1)$
- **C** : direct CP violation parameter, ~0 in SM for $B^0 \rightarrow J/\psi K_{s^0}$

 $sin(2\phi_1) \approx S = 0.724 \pm 0.035$ (stat.) ± 0.014 (syst.)

 $C = 0.035 \pm 0.026$ (stat.) ± 0.012 (syst.)

- HFLAV: $S = 0.695 \pm 0.019$
 - $C = 0.000 \pm 0.020$
- LHCb: $S = 0.716 \pm 0.015$

 $C = 0.012 \pm 0.012$ arXiv:2309.09728

- - $(\pi^+\pi^-, \pi^\pm\pi^0, \pi^0\pi^0),$
 - PRL 65(1991) 3381

	$B^0 \rightarrow \pi^+\pi^-$	$B^+ \rightarrow \pi^+ \pi^0$	B	
<i>В</i> х 10-6	$5.83 \pm 0.22 \pm 0.17$	$5.10 \pm 0.29 \pm 0.32$	1.38 ±	
ACP		$-0.081 \pm 0.54 \pm 0.008$	0.14 ±	
A _{CP} (PDG)		0.03 ± 0.04	0.3	

• $B \rightarrow \rho \rho$ isospin analysis and $B \rightarrow \rho(\pi \pi)\pi$ Dalitz analysis of 3 body decays Unique measurement at Belle II

	$B^0 \rightarrow \rho^+ \rho^-$	$B^+ \rightarrow \rho$
<i>В</i> х 10-6	$26.7 \pm 2.8 \pm 2.8$	23.2 +2.2 ₋₂ .
ACP		-0.069 ± 0.06
A _{CP} (PDG)		-0.05 ±

 ϕ_2 measurement ($B \rightarrow \rho \rho$)

- Compatible with PDG value
- Performance superior to early **Belle results**
- $\Delta \phi_2 \sim 2.5^\circ$ with 10 ab⁻¹ data

arXiv:2207.06307

|V_{cb}|, |V_{ub}| measurement through semi-leptonic *B* decays

Side	Obs	Dominant	
	Drib	$Br(B \rightarrow D^{(*)}/v)$	
V cb	$ B(D \rightarrow CIV) $	$Br(B \rightarrow X_c/v)$	Exclusive:
V ub	Br(b→ulv)	$Br(B \rightarrow \pi/\rho l v)$	phenomen
		$Br(B \rightarrow X_u/v)$	

- $|V_{ub}|$ and $|V_{cb}|$ determinations based on inclusive and exclusive measurements differ by **~**3σ
- Experimental focus is on understanding this discrepancy, as it limits the power of precision flavor physics

Status of $|V_{cb}|$ and $|V_{ub}|$

$\frac{d^4\Gamma}{dwd\cos\theta_l d\cos\theta_V d\chi} \propto |V_{cb}|^2 A(w,\cos\theta_l,\cos\theta_V,\chi)$

- Form factor parameterisations, **BGL** and **CLN**
 - Determination rely heavily on zero recoil w = 1
- LQCD used only for normalisation at zero recoil (w=1)
 - $\mathcal{F}(1) = 0.906 \pm 0.013$

 $||V_{cb}|_{CLN} = (40.13 \pm 0.47 \pm 0.93 \pm 0.58) \times 10^{-3}$ $|V_{cb}|_{BGL} = (40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3}$

arXiv:2310.01170 Accepted by PRD

- BGL: Boyd, Grinstein, Lebed, PRD56(1997)6895
- CLN: Caprini, Lellouch, Neubert, Nucl. Phys. B530(1998) 153

V_{cb} and V_{ub} status from Belle II

- Consistent with world average
- Slightly reduced the tension between exclusive and inclusive $|V_{cb}|$ and $|V_{ub}|$
- reduced with more data

Belle II experimental statistical and systematic uncertainty can be significantly

Test of Lepton Flavor Universality

R(D) and $R(D^*)$ anomaly μ $\frac{Br(\bar{B}^0 \to D^{(*)+}\tau^-\bar{\nu}_{\tau})}{Br(\bar{B}^0 \to D^{(*)+}\ell^-\bar{\nu}_{\ell})}$ W $\bar{\boldsymbol{\nu}}_{\tau} \ \bar{\boldsymbol{\nu}}_{\mu} \ \bar{\boldsymbol{\nu}}_{e} \ R(D^{(*)})$ \bar{B}^0 D^{*+} $R(D^*)$ $\Delta \chi^2 = 1.0$ contours IFI A Prelim. 202 BaBar12 0.35 Belle15 30 0.3 LHCb22 LHCb23 Belle19 0.25 Belle17 World Average 0.2 $R(D) = 0.356 \pm 0.029_{total}$ + HFLAV SM Prediction $R(D^*) = 0.284 \pm 0.013_{total}$ $R(D) = 0.298 \pm 0.004$ PRL 123 (2019) 09180 $\rho = -0.37$ $R(D^*) = 0.254 \pm 0.005$ EPJC 80 (2020) 2,74 $P(\sqrt{2}) - 25\%$ PRD 105 (2022) 034503 0.2 0.25 0.3 0.35 0.5 0.4 0.45 0.55 R(D) $3.8\sigma \rightarrow 3.1\sigma \rightarrow 3.3\sigma \rightarrow 3.2\sigma \rightarrow 3.2\sigma$

- Universality of the lepton coupling to the W gauge boson
 - Lepton Flavor Universality (LFU) is fundamental axiom of Standard Model (SM)
- Ratio of branch fractions cancel out most of the uncertainties on $|V_{cb}|$, form factors and the experimental systematics
- $B \rightarrow D^{(*)}\tau v$ sensitive to NP because the massive 3^{rd} generation *b* quark and τ lepton are involved

2021 LHCb22 LHCb23 LHCb18 Belle19

Signal extraction and uncertainties of Belle II R(D*)

- Extracting $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ yields by a two-dimensional simultaneously fit Similarly sensitivity as Belle 15' result @ 711 fb⁻¹ with only 189 fb⁻¹

Belle II R(D*) result at 189 fb⁻¹

- Belle II first preliminary result for $R(D^*)$ $R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.028}{_{-0.033}}(\text{sys})$
- Consistent with
 SM: 0.254 ± 0.005,
 HFLAV: 0.284 ± 0.013
- SM vs. experimental average deviation: $3.2\sigma \rightarrow 3.3\sigma$

LFU test by $R(X_{\tau/l})$ measurement

- Breakdown of $B \rightarrow X/v$ branching fractions
 - ~ 2/3 overlap with *D* and *D**
 - ~ 3/4 D decay to $v, K_L^0, n\pi \dots$
 - ~ 1/3 contribution from D^{**} and nonresonant X_c
- Multiple LEP experiments measured $Br(B \rightarrow X\tau v)$
 - Br($B \rightarrow X \tau v$) are completely saturated by D/D^* BFs \Rightarrow An update measurement is needed
- R(X) is critical cross-check of R(D^(*)), largest contribution from R(D^(*)), a partially complementary test of LFU

$$R(X_{\tau/\ell}) = \frac{Br(\bar{B} \to X\tau^- \bar{\nu}_{\tau})}{Br(\bar{B} \to X\ell^- \bar{\nu}_{\ell})}$$

• R(X) has never been measured

Results of $R(X_{\tau/l})$ for LFU test

- Signal yields are extracted by a binned maximum-likelihood simultaneous fit to lepton momentum
- Main systematics
 - Adjustment to MC (form factor, D and B branching factions)
 - Sample size in sideband for reweighting
- First Belle II preliminary $R(X_{\tau/l})$ result

 $R(X_{\tau/l}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

 $R(X_{\tau/e}) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R(X_{\tau/\mu}) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

• Consistent with rough SM expectation $R(X_{\tau/l})_{SM} \approx 0.222$

Expected sensitivity of LFU test at Belle II

The Belle II Physics Book, PTEP 2019, 123C01

arXiv:2207.06307

	ļ
	-
	•
	-
	ŀ
	-
	-
 •	

- Experimentally challenging due to two neutrinos in the final state • B tagging: typical method used by Belle and Babar
- - ε ~0.04% (HTA: Hadronic Tagging)
 - Purity: 8/211 ~3.8%
 - Untagging
 - 2nd FBDT 35 variables)
 - Purity: 159/17529 ~0.9%

ε ~8% (ITA: Inclusive Tagging, 2 step Fast BDT, 1st FBDT 12 variables,

Analysis strategy of $B^+ \rightarrow K^+ v \bar{v}$

Background suppression

Validation

Signal extraction

ITA validation of $B^+ \rightarrow K^+ v \bar{v}$ measurement

- A difficult background $B^+ \rightarrow K^+ K_L K_L$, where escape K_L detection
- Dedicate validation of $B^+ \rightarrow K^+ K_s^0 K_s^0$ shows a good modelling
- Similar studies for $B^+ \rightarrow K^+ n \overline{n}$. $B^+ \rightarrow K^+ K_L K_S^0 \dots$

 Measure the known mode as the main background for validation

> $Br(B^+ \rightarrow \pi^+ K_s^0) = (2.5 \pm 0.5) \times 10^{-5}$ $Br(B^+ \rightarrow \pi^+ K_s^0)_{PDG} = (2.3 \pm 0.08) \times 10^{-5}$

Consistent with PDG

First evidence of the $B^+ \rightarrow K^+ v \bar{v}$ precess

- First evidence (3.6 σ) of the $B^+ \rightarrow K^+ v \overline{v}$ process
- 2.8 σ tension w.r.t SM prediction

- Belle II accumulated 362 fb⁻¹ Y(4S) data
- Unitarity triangle (angle, side) measurements already started providing world leading results
- $R(D^{(*)})$ shows 3.2 σ tension, a hint of Lepton Flavor Universality Violation • Belle II performed $R(D^*)$ and $R(X_{\tau/l})$ measurement with hadronic tagging based
 - on 189 fb⁻¹ data
 - $R(D^{(*)})$ anomaly move to 3.3 σ
 - $R(X_{\tau/l})$ consistent with SM expectation
- $B^+ \rightarrow K^+ v \bar{v}$ measured with 362 fb⁻¹ data at Belle I
 - First evidence for $B^+ \rightarrow K^+ v \overline{v}$ decays

 $Br(B^+ \to K^+ \nu \overline{\nu}) = (2.4 \pm 0.5 (\text{stat.})^{+0.5}_{-0.4} (\text{syst.})) \times 10^{-5}$

 SuperKEKB/Belle II will resume operation at the beginning of 2024

Stay tuned !

Summary and prospects

Backup

HTA systematic uncertainties of $B^+ \rightarrow K^+ vv$

Source	Uncertainty size	Impact on σ_{μ}	
Normalization $B\overline{B}$ background	30%	0.91	1
Normalization continuum background	50%	0.58	•
Leading B -decays branching fractions	O(1%)	0.10	
Branching fraction for $B^+ \to K^+ K_L^0 K_L^0$	20%	0.20	
Branching fraction for $B \to D^{(**)}$	50%	< 0.01	
Branching fraction for $B^+ \to K^+ n \bar{n}$	100%	0.05	
Branching fraction for $D \to K_L X$	10%	0.03	
Continuum background modeling, BDT_c	100% of correction	0.29	
Number of $B\bar{B}$	1.5%	0.07	
Track finding efficiency	0.3%	0.01	
Signal kaon PID	O(1%)	< 0.01	
Extra photon multiplicity	O(20%)	0.61	2.
K_L^0 efficiency	17%	0.31	
Signal SM form factors	O(1%)	0.06	
Signal efficiency	16%	0.42	
Simulated sample size	O(1%)	0.60	3.

statistical uncertainty on $\mu = 2.3$

ITA systematic uncertainties of $B^+ \rightarrow K^+ vv$

Source	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background	50%	0.88
Normalization of continuum background	50%	0.10
Leading B -decays branching fractions	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	20%	0.49
<i>p</i> -wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	30%	0.02
Branching fraction for $B \to D^{(**)}$	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	100%	0.20
Branching fraction for $D \to K_L X$	10%	0.14
Continuum background modeling, BDT_{c}	100% of correction	0.01
Integrated luminosity	1%	< 0.01
Number of $B\bar{B}$	1.5%	0.02
Off-resonance sample normalization	5%	0.05
Track finding efficiency	0.3%	0.20
Signal kaon PID	O(1%)	0.07
Photon energy scale	0.5%	0.08
Hadronic energy scale	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	8%	0.21
Signal SM form factors	O(1%)	0.02
Global signal efficiency	3%	0.03
MC statistics	O(1%)	0.52

Results and global picture of $B^+ \rightarrow K^+ vv$

 $\mu = 5.6 \pm 1.1(\text{stat})^{+1.1}_{-0.9}(\text{syst})$ $\mathscr{B}(B^+ \rightarrow K^+ \nu \bar{\nu}) = 2.8 \pm 0.5 \text{(stat)} \pm 0.5 \text{(syst)} \times 10^{-5}$

First evidence of the $B^+ \rightarrow K^+ \nu \bar{\nu}$ process

2.3(stat)^{+1.6}_{-0.7}(syst)

$$.1^{+0.9}_{-0.8}(stat)^{+0.8}_{-0.5}(syst)] \times 10^{-5}$$

id-only hypothesis ($\mu = 0$): 1.1 σ
hypothesis ($\mu = 1$): 0.6 σ

Light-lepton universality test R(X)

- Test light-lepton universality by measuring $R(X_{\tau/\ell}) =$
- Approach employed at Belle II: M_X reweighting
 - Events weights from data/MC ratio in M_X distribution, applied to all events
 - q^2 , M^2_{miss} can be expressed by reliable parts and M_X part
- Signal yields are extracted by a binned maximum-likelihood simultaneous fit to lepton momentum

Light-lepton universality test $R(X_{e/\mu})$

- First $R(X_{e/\mu})$ measurement $R(X_{e/\mu}) = 1.033 \pm 0.010$ (stat) ± 0.019 (syst)
- Most precise BF based LFU test of $e-\mu$ universality with semileptonic B decays to date
- Consistent with SM value by 1.2σ $R(X_{e/\mu})_{\text{SM}} = 1.006 \pm 0.001$ JHEP 11 (2022) 007
- Compatible with exclusive Belle measurements PRD 100, 052007 (2019) $R(D_{e/\mu}^{*}) = 1.01 \pm 0.01$ (stat) ± 0.03 (syst) $R(D_{e/\mu}^{*}) = 0.990 \pm 0.021$ (stat) ± 0.023 (syst)

arXiv:2301.07529

arXiv:2301.08266

Signal channel ($B^0\bar{B}^0/B^+B^-$)

Hadronic tag reconstruction at Belle II

- Hadronic tagging reconstruction : Full Event Interpretation (FEI) trained 200 Boost Decision Tree (BDT) to reconstruct ~100 decay channels, ~10,000 *B* decay chains

arXiv:2008.06096

Tagging methods

- <u>Hadronic tag</u>
 - Exclusive tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background
 - Inclusive tag
 - Reconstruct tag B with all particles except signal **B e**⁻

Exclusive hadronic tag side

• B tagging is necessary to measure $B \rightarrow X/D^*\tau v$, $B \rightarrow X/D^*lv$ ($\nu \ge 2$) simultaneously

- Semileptonic tag
 - Reconstruct $B \rightarrow D^{(*)} lv$
 - Tagging efficiency ~0.5%
 - More background

X : reconstruct other particles than a lepton as X on signal side

- Hadronic tag
 - Exclusive tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background

- Fully reconstruct one of the B mesons (B tag), possible to measure momentum of other B meson (B signal)
- Indirectly measure missing momentum of neutrinos in signal B decays
- $M^2_{\text{miss}} = (p_{\text{beam}} p_B_{\text{tag}} p_D(*) p_i)^2$
- E_{ECL} unassigned neutral energy in the calorimeter

 $E_{\text{ECL}} = \sum_{i} E_{i}^{\gamma} \int \text{yields determination} _{37}$

Effective ϕ_1 with QCD penguin

- $b \rightarrow s \overline{q} q$: QCD penguin dominated contribution, suppressed in SM, sensitive to New Physics
 - Deviation of $S_f = sin(2\phi_1 e_f)$ from $sin(2\phi_1)$ indicates NP
- Golden mode, e.g. $B \rightarrow \phi K, B \rightarrow \eta' K \dots$
 - Fully hadronic states with neutrals
 - Unique at Belle II

• Interference between $b \rightarrow c$ and $b \rightarrow u$ (tree level) Current precision ~3.5°

0.15

r_B : ratio of amplitude δ_B : strong phase difference

-0.05

∆E [GeV]

Pull

JHEP 02 (2022) 063

ϕ_3 measurement

D decay	Method	Data set		
		(Belle + Belle II)	$[fb^{-1}]$	
$D \rightarrow K_{\rm s}^0 h^- h^+$	BPGGSZ	711 + 128	[JHEP 02 0)63 (2
$D ightarrow K_{ m s}^0 \pi^- \pi^+ \pi^0$	BPGGSZ	711 + 0	[JHEP 10 1	78 (2
$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711+189	[arxiv:2308	3.050
$D ightarrow K^+ \pi^-, K^+ \pi^- \pi^0$	ADS	711 + 0	[PRL 106 2	2318
$D ightarrow K_{ m S}^0 K^- \pi^+$	GLS	711+362	[arxiv:2306	6.029
$D \rightarrow K_{\rm S}^0 \pi^- \pi^+$	BPGGSZ	605 + 0	[PRD 81 1	1200
$D \rightarrow K^0_{\rm S} \pi^0, K^0_{\rm S} \phi, K^0_{\rm S} \omega,$	CIW	210 ± 0		C 4 4 0
$K^-K^+,\pi^-\pi^+$	GLW	210+0	[PRD 73 0	5110

• Belle + Belle II combined results obtained for ϕ_3 determination • First Belle + Belle II combination: $\phi_3 = (78.6 \pm 7.3)$, HFLAV:66.2+3.4-3.6 39

If the current World Average hold

- Tensions existed on V_{ub} and ϕ_1
 - UT can not close if keeping the
- Differences between UT determined by tree (V_{ub} , ϕ_3) and loop (ϕ_1 , ϕ_2) can be discriminated with 50 ab⁻¹ data-set

Belle II - LHCb comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in B_{d} , τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Observable

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

P. URQUIJO @ Beauty 2020

Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	LHC upgrad (300 fl
CP Violation						
0.03	0.04	0.012	0.005	0.011	0.002	0.
13°	5.4°	4.7°	1.5°	1.5°	0.4°	
4°	_	2	0.6°	_	0.3°	
4.5%	6%	2%	1%	3%	<1%	
_	49 mrad	_	_	14 mrad	_	4 n
0.08	0	0.03	0.015	0	0.007	
0.15	_	0.07	0.04	_	0.02	
Penguins, LFUV						
0.32	0	0.11	0.035	0	0.015	
0.24	0.1	0.09	0.03	0.03	0.01	(
6%	10%	3%	1.5%	3%	<1%	
24%, –	_	9%, 25%	4%, 9%	_	1.7%, 4%	
_	90%	_	_	34%	_	1
_	8.5×10-4	_	5.4×10-4	1.7×10-4	2×10-4	0.3×
1.2%	_	0.5%	0.2%	_	0.1%	
<120×10-9	_	<40×10-9	<12×10-9	_	<5×10-9	
<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	$<5\times$

 \circ Possible in similar channels, lower precision 41 - Not competitive.

SuperKEKB

 High Energy Accelerator Organization (KEK@Tsukuba) SuperKEKB: asymmetric e+ (4GeV) e- (7GeV)collider, 3km • Nano beam scheme, squeeze the beam $\sigma_y^* \sim 50$ nm

The Belle II Collaboration

New physics scenarios

In general, there are three typical candidate scenarios to explain the anomaly observed in $R(D^{(*)})$

- Heavy vector bosons
 - Constrained from $W' \rightarrow \tau v$ and $Z' \rightarrow \tau \tau$ search
- Charged Higgs

 - Constrained from $B_c \rightarrow \tau v$ and $H^{\pm} \rightarrow \tau v$, still allowed • Previously, it was rejected by $B_c \rightarrow \tau v$ measurement, however, recovered by recalculating the B_c lifetime. arXiv:2201.06565
- Leptoquark
 - $gg \rightarrow LQ LQ^*$, still broad parameter regions are allowed

Belle II - LHCb comparison

Year

Semi-leptonic B decays

