

Dark Matter & Dark Sector at CEPC

Xiao-Ping Wang (王小平)

The 2023 International Workshop on the High Energy Circular Electron Positron Collider 2023-10-24

•	٠	٠	٠	٠
•	٠	٠	٠	•
•	•	٠	٠	•
•	٠	٠	٠	٠
•	٠	٠	٠	•
•	٠	٠	٠	
•	٠	٠	٠	•
•	٠	٠	٠	•
•	٠	٠	٠	٠
•	٠	٠	٠	•
•	٠	٠	٠	•
•	٠	٠	٠	٠
•	٠	٠	٠	•

. . .

. . .

• • •

• • •

. . .

• • •

• • •

. . .

CEPC BSM Physics Program

Indirect searches from SM precision measurements (not included here)

*1012 Z events

BSM Higgs

SUSY

- Light EWKinos
- Light sleptons
- Heavy selectrons
- Axinos

.....

Dark Matter & Dark Sector

- Lepton portal DM
- Asymmetric DM
- Dark Sector from exotic Z decay •
- Dark Sector-photon interactions
- Millicharged DM, Vector portal DM, DM with EFT interactions
- Mono-gamma

.....

Dark Fermion in light of Electron Target Absorption

My topic

Courtesy of Xuai Zhuang

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

=fermions+force mediators

. .

•	٠	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Dark Matter and Dark Sector

Dark mediator X with small coupling to SM

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

- Dark Matter and Dark Sector
 - Fermion portal lepton portal
 - Higgs portal
 - Vector portal
 - EFT models
- Summary

•	٠	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

- The Fermion portal to DM
 - The Interaction: $\lambda \bar{\psi} \phi f_{SM}$
 - Dark Matter and Dark Sector
 - Fermion portal lepton portal
 - f can be quark/lepton, L/R-handed

 ϕ can be DM as well!

Searching lepton portal dark sector at CEPC

$$egin{aligned} \mathcal{L}_{\chi} &= rac{1}{2} ar{\chi} i \partial \!\!\!/ \chi - rac{1}{2} m_{\chi} ar{\chi} \chi + y_\ell \left(ar{\chi}_L S^\dagger \ell_R + ext{h.c.}
ight), \ \mathcal{L}_S &= \left(D^\mu S
ight)^\dagger D_\mu S - V(H,S), \ V(H,S) &= \mu_H^2 |H|^2 + \mu_S^2 |S|^2 + \lambda_H |H|^4 + \lambda_S |S|^4 + 2. \end{aligned}$$

- DM (χ) couples to SM via the lepton portal
- Mediated by charged particle (S), similar to slepton
 - DM thermal relic requirements
 - Lepton collider production of dark sector particle S
 - Higgs precision test on the model
 - Gravitational Wave signal and its complementary with ee collider

JL, XP Wang, KP Xie, 2104.06421 (JHEP)

 $2\lambda_{HS}|H|^2|S|^2$

•	•	•	•	٠	•
•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	
•	•	•	•	•	

- 3-body final state: $e^+e^- \rightarrow S^+S^{-*} \rightarrow S^+\ell^-\chi \rightarrow (\ell^+\chi)\ell^-\chi$
 - Reaching higher mass: $m_S \gtrsim \sqrt{s/2} = 120$ GeV

JL, XP Wang, KP Xie, 2104.06421 (J

•	•	•	•	•	•
•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
н	E	P)		

Invisible Higgs decay at 1-loop

JL, XP Wang, KP Xie, 2104.06421 (JHEP)

 Higgs precision measurement can cover 1st order phase transition region, m_S , up to hundred of GeV

JL, XP Wang, KP Xie, 2104.06421 (J

$$\mathcal{L}_{\chi} = \frac{1}{2} \bar{\chi} i \partial \!\!\!/ \chi - \frac{1}{2} m_{\chi} \bar{\chi} \chi + y_{\ell} \left(\bar{\chi}_L S^{\dagger} \ell_R + \text{h.c.} \right),$$
$$\mathcal{L}_S = (D^{\mu} S)^{\dagger} D_{\mu} S - V(H, S),$$

 $V(H,S) = \mu_H^2 |H|^2 + \mu_S^2 |S|^2 + \lambda_H |H|^4 + \lambda_S |S|^4 + 2\lambda_{HS} |H|^2 |S|^2$

•	•	•	•	•	•
•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
н	E	P)		

- A model for (dark) baryogengesis via leptogenesis
- The dark matter is dark baryon and asymmetric

Right-handed nu/Leptogenesis Dark mediators/ Fermion-portal type Dark quark/ DM is dark baryon

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{2} \sum_{i=1,2} M_{N_i} \overline{N}_i N_i^C - m_{\Phi}^2 \Phi^{\dagger} \Phi - m_{\chi} \overline{\chi} \chi - m_{q'} \overline{q'} q' + \mathcal{L}_{\rm kinetic}$$
$$- \sum_{i=1,2} \lambda_i \overline{N}_i \chi \Phi^{\dagger} - \kappa \Phi \overline{q'}_L l_R - \frac{1}{\Lambda_1^2} \left(\overline{q'}^C \chi \right) \left(\overline{q'}_L^C l_R \right) - \frac{1}{\Lambda_2^2} \left(\overline{\chi} \gamma^{\mu} q' \right)$$

Mengchao Zhang, 2104.06988 (PRD)

	SU(3)'	SU(3)	$U_Y(1)$	Spin	L	B	B'
N_1/N_2	1	1	0	1/2	0	0	0
Φ	3	1	1	0	-1	0	1/3
χ	3	1	1	1/2	-1	0	1/3
q'	3	1	0	1/2	0	0	1/3
l_R	1	1	-1	1/2	1	0	0
d_R	1	3	-1/3	1/2	0	1/3	0
u_R	1	3	2/3	1/2	0	1/3	0

 $\left(\bar{d}_R\gamma_\mu u_R\right) + h.c.$

٠	•	•	•	٠	•
٠	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Mengchao Zhang, 2104.06988 (PRD)

	SU(3)'	SU(3)	$U_Y(1)$	Spin	L	
N_{1}/N_{2}	1	1	0	1/2	0	
Φ	3	1	1	0	-1	
χ	3	1	1	1/2	-1	
q'	3	1	0	1/2	0	
l_R	1	1	-1	1/2	1	
d_R	1	3	-1/3	1/2	0	-
$\overline{u_R}$	1	3	2/3	1/2	0	-

$$(\bar{d}_R \gamma_\mu u_R) + h.c.$$

$$\Delta L \neq 0$$

•	٠	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Dark jets at ee collider

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} \sum_{i=1,2} M_{N_i} \overline{N}_i N_i^C - m_{\Phi}^2 \Phi^{\dagger} \Phi - m_{\chi} \overline{\chi} \chi - m_{q'} \overline{q'} q' + \mathcal{L}_{\text{kinetic}}$$
$$- \sum_{i=1,2} \lambda_i \overline{N}_i \chi \Phi^{\dagger} - \kappa \Phi \overline{q'}_L l_R - \frac{1}{\Lambda_1^2} \left(\overline{q'}^C \chi \right) \left(\overline{q'}_L^C l_R \right) - \frac{1}{\Lambda_2^2} \left(\overline{\chi} \gamma^{\mu} q' \right) \left(\overline{d}_R \gamma_{\mu} u_R \right) + h.c.$$
$$\bullet \text{ Relevant Lagrangian}$$

$$\mathcal{L} \supset \bar{q'}(D \!\!\!/ \!\!\!/ - m_{q'})q' + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - m_{\Phi}^2 \Phi^{\dagger}\Phi - \frac{1}{4}G'^{\mu\nu}G'_{\mu\nu} - (\kappa \Phi \bar{q'}_L l_R + h.c.)$$

Mengchao Zhang, 2104.06988 (PRD)

P. Schwaller et al, 1502.05409 (JHEP)

• $e^+e^- \rightarrow \bar{q}'q'$ followed by dark hadronization

•	•	•	•	٠	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

- Dark Matter and Dark Sector
 - Fermion portal lepton portal
 - Higgs portal
 - Vector portal
 - EFT models
- Summary

•	٠	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Precision measurement of Higgs

Invisible Higgs test to 0.07%@CEPC

	$240{ m GeV}$	$V,20~{ m ab}^{-1}$	360 (GeV, 1 a	ab^{-1}
	\mathbf{ZH}	\mathbf{vvH}	\mathbf{ZH}	\mathbf{vvH}	\mathbf{eeH}
inclusive	0.26%		1.40%	\setminus	\backslash
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
$H \rightarrow WW$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H \to \gamma \gamma$	3.02%		11%	16%	
$H \rightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%		1.10%	

A pseudo-scalar connection to muon g-2

$$\mathcal{L}_{ ext{eff}}^{D \leq 5} = rac{1}{2} \left(\partial_{\mu} a
ight) (\partial^{\mu} a) - rac{m_{a,0}^2}{2} a^2 + rac{\partial^{\mu} a}{\Lambda} \sum_F \, ar{\psi}_F \, m{C}_F \, \gamma_{\mu} \, \psi_F$$

Couplings to muon, Hypercharge field B, and SU(2) W

$+ g_s^2 C_{GG} \frac{a}{\Lambda} G^A_{\mu\nu} \tilde{G}^{\mu\nu,A} + g^2 C_{WW} \frac{a}{\Lambda} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + g'^2 C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$

W.Y. Keung et al, hep-ph/0009292 W.J. Marciano et al. 1607.01022 M. Bauer, M. Neubert, A. Thamm, 1708.00443 M. A. Buen-Abad, J. Fan, M. Reece, C. Sun 2104.03267 JL, X. Ma, L.T. Wang, W.P. Wang 2210.09335 (PRD)

•	٠	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Pseudo-Scalars at the Z-factory

$$\mathcal{L}_{\text{eff}}^{D \le 5} = \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^2}{2} a^2 + \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^2}{2} a^2 + \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{1}$$

$$+ g_s^2 C_{GG} \frac{a}{\Lambda} G^A_{\mu\nu} \tilde{G}^{\mu\nu,A} + g$$

• Z exotic decays

JL, X. Ma, L.T. Wang, W.P. Wang 2210.09335 (PRD)

A pseudo-scalar connection to muon g-2 and future Z-factory

- Dark Matter and Dark Sector
 - Fermion portal lepton portal
 - Higgs portal
 - Vector portal
 - EFT models
- Summary

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

- The vector portal to DM
 - The Interaction: $g' \bar{\chi} \gamma^{\mu} \chi Z'_{\mu}$
 - Millicharged DM: EM with ϵe
 - Kinetic mixing portal
 - Effective Z' through fermion mass mixing

•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

The vector portal to DM

- The Interaction: $g' \bar{\chi} \gamma^{\mu} \chi Z'_{\mu}$
 - Millicharged DM: EM with ϵe
 - Kinetic mixing portal
 - Effective Z' through fermion mass mixing $(\psi/f_{\rm SM})$

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

P. Fox, JL, D.T. Smith, N. Weiner, 1104.4127 (JHEP)

•	٠	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Searching DM via mono-photon at CEPC

• DM searches via mono-photon final states

Z' portal DM $\mathcal{L} = Z'_{\mu} \bar{\chi} \gamma^{\mu} (g_V^{\chi} - g_A^{\chi} \gamma_5) \chi + Z'_{\mu} \bar{f} \gamma^{\mu} (g_V^f - g_A^f \gamma_5) f,$

-
-
-
-
-
-
-

Zuowei Liu et al, 1903.12114 (JHEP)

DM EFTs $\mathcal{L} = rac{1}{\Lambda_V^2} ar{\chi} \gamma_\mu \chi ar{\ell} \gamma^\mu \ell,$ $\mathcal{L} = \frac{1}{\Lambda_s^2} \bar{\chi} \chi \bar{\ell} \ell,$ $\mathcal{L} = \frac{1}{\Lambda_A^2} \bar{\chi} \gamma_\mu \gamma_5 \chi \bar{\ell} \gamma^\mu \gamma_5 \ell,$ $\mathcal{L} = \frac{1}{\Lambda_{\star}^2} \bar{\chi} \ell \bar{\ell} \chi$

• The Z/Higgs factory modes can provide competitive sensitivity comparing with existing colliders

Zuowei Liu et al, 1903.12114 (JHEP)

• The signal distribution at Z (2.6 ab^{-1}), H (5.6 ab^{-1}), WW modes (16 ab^{-1})

 The Z/Higgs factory modes can provide competitive sensitivity comparing with existing colliders and direct detection searches

Constraints on Z' portal DM model

Zuowei Liu et al, 1903.12114 (JHEP)

• The signal distribution at Z (2.6 ab^{-1}), H (5.6 ab^{-1}), WW modes (16 ab^{-1})

 $\mathscr{L} = -\frac{1}{\Delta}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_{A'}$

Z gauge boson is involved (K denotes A')

$$\mathcal{L} \supset rac{-1}{4} \left(\ Z^{\mu
u}_{
m SM} \ A^{\mu
u}_{
m SM} \ K^{\mu
u}
ight)$$

$$+\frac{1}{2}\left(\begin{array}{cc} Z^{\mu}_{\rm SM} & A^{\mu}_{\rm SM} & K^{\mu} \end{array}\right) \left(\begin{array}{c} m^2_{Z, \ \rm SM} \\ 0 \\ 0 \end{array}\right)$$

JL, Xiao-Ping Wang, Felix Yu, <u>1704.00730</u> (JHEP)

Kinetic Mixing Portal: A' should kinetic mixing with Hypercharge field

$$_{2}^{\prime 2}A^{\prime \mu}A^{\prime \mu}-\frac{1}{2}\epsilon F^{\prime \mu\nu}B^{\mu\nu}+g^{\prime}A^{\prime \mu}_{\mu}j_{D}^{\mu\nu}$$

UV Complete model for dark Z'

 $\mathcal{L} \supset g Z_{\mu, \text{ SM}} J_Z^{\mu} + e A_{\mu, \text{ SM}} J_{\text{em}}^{\mu} + g_D K_{\mu} J_D^{\mu}$ $+ \tilde{A}_{\mu} e J^{\mu}_{em}$.

Vanish in the $m_{A'} \ll m_Z$ limit

Exist but usually overlooked Could be tested at future Z-factory (e.g. CEPC)

E.g. if dark scalar is contained in the current j_D

UV Complete model for dark Z'

•	•	•	•	•	
•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	

- Dark Matter and Dark Sector
 - Fermion portal lepton portal
 - Higgs portal
 - Vector portal
 - EFT models
- Summary

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

 \mathcal{O}

 \mathcal{O}

 $\mathcal{O}_{\mathcal{O}}$

- Shaofeng Ge et al, 2201.11497 (JHEP) Light DM can provide enough energy to direct detection via downscattering (fermionic)/absorption (bosonic)
 - Inelastic DM $\chi_2 q \rightarrow \chi_1 q$, Luminous DM long-lived $\chi_2 \rightarrow \chi_1 \gamma$
 - Fermionic DM down-scattering: $\chi e \rightarrow \nu e$, no Z₂ protection

$$\begin{aligned} \mathcal{D}_{e\nu\chi}^{S} &\equiv (\bar{e}e)(\bar{\nu}_{L}\chi_{R}), \\ \mathcal{D}_{e\nu\chi}^{P} &\equiv (\bar{e}i\gamma_{5}e)(\bar{\nu}_{L}\chi_{R}), \\ \mathcal{D}_{e\nu\chi}^{V} &\equiv (\bar{e}\gamma_{\mu}e)(\bar{\nu}_{L}\gamma^{\mu}\chi_{L}), \\ \mathcal{D}_{e\nu\chi}^{A} &\equiv (\bar{e}\gamma_{\mu}\gamma_{5}e)(\bar{\nu}_{L}\gamma^{\mu}\chi_{L}), \\ \mathcal{D}_{e\nu\chi}^{T} &\equiv (\bar{e}\sigma_{\mu\nu}e)(\bar{\nu}_{L}\sigma^{\mu\nu}\chi_{R}), \end{aligned}$$
 $\stackrel{\bullet}{\text{Badiativ}}_{\substack{\nu + \gamma^{n} \text{ i} \\ e\text{nough}}} \end{aligned}$

table, because

 $(\bar{\nu}_L \chi_R) F^2, (\bar{\nu}_L \chi_R) F\tilde{F}$

 $2m_{\rho}$ tive decay to is small

Process Operator	$\chi ightarrow u \gamma$	$\chi ightarrow u \gamma \gamma$	$\chi ightarrow u \gamma \gamma \gamma$	
$\mathrm{S:}~\mathcal{O}^{S}_{e u\chi}$	×	\checkmark	×	I
$\mathrm{P}: \mathcal{O}^{P}_{e\nu\chi}$	×	\checkmark	×	I
$\mathrm{V}:\mathcal{O}_{e u\chi}^V$	×	×	\checkmark	I
A: $\mathcal{O}^{A}_{e\nu\chi}$	×	\checkmark	×	I
$\mathrm{T}:\mathcal{O}_{e\nu\chi}^{T}$	\checkmark	×	×!	

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

DM down-scattering: $\chi e \rightarrow \nu e$

Shaofeng Ge et al, 2201.11497 (JHEP)

Light DM can provide enough energy to direct detection via fermionic

 Actively searched by DM direct detection experiments

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

- The future ee collider can also test this scenariom via
 - $e^+e^- \rightarrow \gamma \nu \bar{\chi}, e^+e^- \nu \bar{\chi}, e^+e^- \nu \bar{\nu}$, in multi-particle final states

Shaofeng Ge et al, 2201.11497 (JHEP)

•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Future ee collider (CEPC/FCC-ee etc) provides valuable opportunities to dark matter and dark sector JL, LT Wang, XP Wang, W. Xue, 1712.07237 (PRD)

Thank you!

•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

