

Search for Long-lived Particles at Future Lepton Colliders Using Deep Learning Techniques

Yulei Zhang^[1], Xiang Chen^[1], Cen Mo^[1], Bingzhi Li^[3], Jifeng Hu^[2], Hongyang Chen^[3], Liang Li^[1]

[1] Shanghai Jiao Tong University[2] South China Normal University[3] Zhejiang Lab

New Physics Beyond the SM - LLPs

- Particle lifetimes span a very wide range and long lifetimes can generically appear in the BSM theories.
- Dedicated searches for long-lived BSM particles are necessary.
- For a comprehensive overview of LLP, please refer to Liang's Talk.

General LLP Topology

• Object (neutral or charged) decaying a *macroscopic* and *reconstructible* distance from IP

Signal signature of a long-lived particle:

 Neutral LLP decays are a spectacular signature, and the burst of energy appearing out of nowhere sets it apart from the collision point.

JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS. 47(9) (2020)

Higgs Portal to BSM

Analysis Strategy

- Traditional selection-based analysis relies on the specific reconstruction and selection algorithm for the limited possible LLP phase space (mass and lifetime).
- A novel machine learning-based analysis is introduced, directly utilizing raw detector response to classify events with LLPs and SM events.
- LLPs are classified into **3 categories** based on the number of detectable LLPs (0/1/2 DLLPs)
- Possible backgrounds: **2-fermion** and **4-fermion** (SM processes with jets and large cross-section)

LLPs Search @ CEPC

- **Full simulation** with CEPC official software (V4)
- The decay vertex of LLPs: $0 \le r_{decay} \le 6 [m]$
- Signal sample generated by MadGraph5 and showered by Pythia8

Process	# of Events simulated
Signal: $Z \rightarrow \overline{q}q$, $H \rightarrow X_1 + X_2$ (2-jet)	$\sim 1.0 \times 10^{6}$
Signal: $Z \to \overline{\nu}\nu$, $H \to X_1 + X_2$ (2-jet)	$\sim 1.0 \times 10^{6}$
Signal: $Z \rightarrow \overline{q}q$, $H \rightarrow X_1 + X_2$ (4-jet)	$\sim 1.0 \times 10^{6}$
Signal: $Z \to \overline{\nu}\nu$, $H \to X_1 + X_2$ (4-jet)	$\sim 1.0 \times 10^{6}$
$e^+e^- ightarrow q \overline{q}$	$\sim 0.99 \times 10^{7}$
$e^+e^- \rightarrow ZH$ (Standard Model)	$\sim 1.37 \times 10^{6}$
$e^+e^- \rightarrow W/Z$	$\sim 1.3 \times 10^{7}$

Convert Events to Images

Images received by neural network.

- Time difference: $\Delta t = t_{hit} \frac{R}{c}$ is represented by the color of circle: light color represents large Δt .
- Energy deposition is illustrated as the size of circle: bigger circle represents more energy.

Raw detector information \rightarrow a 2D image in a size of (R, ϕ) = 200×200 and 2 channels.

CNN Architecture

Heterogeneous Graphs

Features	Variable	Definition	h_c^{l+1} .	x_c^{l+1} h_t^{l+1}	x_{t}^{l+1}					
calorimeter type node <i>i</i>	$egin{aligned} x_i^\mu \ p_i^\mu \ N_i \ \eta_i \ \phi_i \ R_i \end{aligned}$	the space-time interval the invariant mass the number of hits $\frac{1}{2} \ln \frac{1+\frac{P_{x}}{2}}{1-\frac{P_{x}}{p_{x}}}$ $\arctan \frac{P_{y}}{p_{x}}$ $\sqrt{\eta^{2} + \phi^{2}}$	Heterogeneous Det			dete bloc poo	ector informat k (DIB) p P	ion Scores Decodir CRead-ou	s ng ut	
calorimeter type edge between node i and j	x_i^{μ} $ x_i^{\mu} - x_j^{\mu} , \mu $	$x_{j\mu}, p_i^{\mu} p_{j\mu}, x_i^{\mu} p_{j\mu}, p_i^{\mu} x_{j\mu}$ $p_i^{\mu} - p_j^{\mu} , \eta_i - \eta_j, \phi_i - \phi_j, R_i - R_j$	actor Infr		¢ ¢			← HDIB	→ 	
tracker type node <i>i</i>	$egin{array}{c} r \ N_i \ \eta_i \ \phi_i \ R_i \end{array}$	euclidean distance the number of hits $\frac{\frac{1}{2} \ln \frac{1+\frac{x}{r}}{1-\frac{x}{r}}}{\arctan \frac{y}{x}}$ $\frac{\arctan \frac{y}{x}}{\sqrt{\eta^2 + \phi^2}}$	ormation Block (HE			× L - 1	h_c^{L-1} DIB h_c^0	x_c^{L-1} \leftarrow HDIB x_c^0 Embeddi	$\begin{array}{c c} & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$\begin{array}{c} x_t^{L-1} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
tracker type edge between node i and j	$ r_i - r_j $, $r_i r_j$, $\eta_i - \eta_j$, $\phi_i - \phi_j$, $R_i - R_j$		h_c^l h_t^l		calor no	imeter ca ode	l alorimeter edge	l tracker node	 tracker edge

- Features of nodes: calorimeter-type and tracker-type.
- Features of edges: interaction between neighbor nodes.

ML-based Analysis Results

- Both CNN and GNN achieve high signal efficiencies.
- The performance is consistent across different LLP mass and lifetime considerations.
- Best efficiency (50 GeV, 1 ns): 0.99
- With full range of CEPC detector, LLPs with different masses and lifetimes manifest high Acceptance × Efficiency

Approach	Efficiency	Lifetime [ns]							
	Mass [GeV]	0.001	0.1	1	10	100			
CNN	1	0.82	0.90	0.79	0.74	0.77			
	10	0.80	0.89	0.90	0.89	0.84			
	50	0.88	0.96	0.99	0.98	0.93			
	1	0.83	0.89	0.80	0.80	0.79			
GNN	10	0.77	0.86	0.92	0.86	0.84			
	50	0.88	0.92	0.97	0.97	0.93			

Signal efficiency with background-free condition

Exclusion Limit

- Best expected limit of 4×10^{-6} has been achieved.
- Outperforming the current limit from ATLAS and CMS by two order of magnitude.
- Comparable performance with ILC's when $\tau_{LLP} < 1 \text{ ns}$
- An order of magnitude better than the ILC's when $\tau_{LLP} > 1 \text{ ns}$

2D Limit Scan

- The 2D scan on $(\mathcal{B}(h \to XX)|_{2-jet}, \mathcal{B}(h \to XX)|_{4-jet})$ for the 95% CL upper limits.
- Better exclusion results for high-mass region (50 GeV) and low-mass region with short lifetime (< 1 ns).

External Detector Design

- Outside muon detector to track LLPs
- Same detector structure in <u>Xiaolong's report</u>
 - scintillator strip + WLS fiber +SiPM
- geometry acceptance $\epsilon_{\rm geo}\approx 0.65$

_	Gain		Lifetime [ns]				
	Mass [GeV]	0.001	0.1	1	10	100	
Ext. Detector	1	1	1	3.2	11.6	16.2	
	10	1	1	1	3.3	11.8	
	50	1	1	1	1.1	3.6	

an external detector covering distance of 100 meters

Summary

- Investigated a ML-based solution of searching for Long-Lived Particles (2-jet and 4-jet final states)
 @ CEPC.
 - current results are based on CEPC_v4 geometry setup
 - Can easily adapt to other geometry settings or other lepton collider settings
- First attempt only using raw detector information
 - Good sensitivity reached ($\sim 10^{-6}$) with (expected) 1×10^{6} Higgs statistics.
 - The performance of different neural networks (CNN, GNN) are consistent and comparable.
- An external detector outside the baseline CEPC detector can benefit the LLP sensitivity.
 - An order of magnitude (~16) improvement for low mass ($\leq 1 \text{ GeV}$) and long lifetime (> 100 ns) LLPs
- Paper to be submitted soon.