Trace *Zbb* **dipole operators at future lepton colliders (CEPC)**

Tan, Xiaoze

Department of Physics Fudan University

CEPC 2023, Nanjing U. Oct. 26, 2023

Preliminary for arXiv: 23xx.xxxx, in collaboration with

Jiayin Gu, Jiayu Guo

Is SM complete, what's next?

Standard Model of Elementary Particles

Directly search for BSM

- Larger collider: higher energy → new massive particles
- Other searches: SUSY particles, Dark matters, Exotics, ALPs, LLPs ...

Precision measurements indirectly

- Higgs is a new portal \rightarrow Higgs factories
- EW precision test \rightarrow lepton colliders
- A telescope to high scale physics
- Interplay of theory and experiment is essential
- Effective tool \rightarrow SMEFT (model independent)

Z-pole status

Some Z pole observables [PDG2022]

Quantity	Value	SM prediction		
M_Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020		
Γ_Z [GeV]	2.4955 ± 0.0023	2.4941 ± 0.0009		
σ_{had} [nb]	41.481 ± 0.033	41.482 ± 0.008		
R_e	20.804 ± 0.050	20.736 ± 0.010		
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002		
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003		
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007		
$A_{FB}^{(0,b)}$	0.0996 ± 0.0016	0.1029 ± 0.0002		
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002		
A_e	0.1498 ± 0.0049	0.1468 ± 0.0003		
A_b	0.923 ± 0.020	0.9347		
A_c	0.670 ± 0.027	0.6677 ± 0.0001		

* For Ae, only LEP 1 results shown here

- Most observables are measured precisely and consistent with theoretical prediction.
- Except A_{FB} for *b*-quark, still exist ~ 2 σ deviation.
- At future lepton colliders, such as CEPC, trillion Z bosons could be produced.

 \Rightarrow Opportunity to reveal potential BSM NP with much improved precision.

SMEFT & dipole operators

Stand Model Effective Field Theory

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j} \frac{C_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)} + \cdots$$

- A denotes the new physics scale.
- For scale $\Lambda \gg E$, v, the new physics effects around EW scale could be well approximated by dimension-6 operators.
- 59 (76) dimension-6 operators for 1 generation, usually less than half of them are concerned on EW/Higgs measurements.

Many global fit analysises are performed

SMEFT & dipole operators

SMEFT dim-6 dipole operators

(Warsaw basis, 3rd generation quarks)

$$\begin{aligned} O_{uW}^{33} &= \left(\bar{q}_L \sigma^{\mu\nu} \tau^I t_R \right) \tilde{H} W_{\mu\nu}^I, \quad O_{dW}^{33} &= \left(\bar{q}_L \sigma^{\mu\nu} b_R \right) \sigma^i H W_{\mu\nu}^i, \\ O_{uB}^{33} &= \left(\bar{q}_L \sigma^{\mu\nu} t_R \right) \tilde{H} B_{\mu\nu}, \qquad O_{dB}^{33} &= \left(\bar{q}_L \sigma^{\mu\nu} b_R \right) H B_{\mu\nu}. \end{aligned}$$

where, $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}], W^{i}_{\mu\nu} = \partial_{\mu}W^{i}_{\nu} - \partial_{\nu}W^{i}_{\mu} - g_{W}\varepsilon^{ijk}W^{j}_{\mu}W^{k}_{\nu}$ (similar form of $B_{\mu\nu}$)

- Generally, at the amplitude level $\mathcal{M}_{dipole} \propto m_f v / \Lambda^2$
- Top is the exception, its dipole was "pinned down" at LHC:

 $C_{uw}^{33} = [-1.2, +1.4](\Lambda / \text{ TeV})^2$ and $C_{uB}^{33} = [-1.9, +1.2](\Lambda / \text{ TeV})^2$ (*ttZ*/ γ measurement @ LHC Run2, 95% CL) [M. Schulze, Y. Soreq 1603.08911]

Tan, Xiaoze (FDU)

$Zb\overline{b}$ dipole could be traced

- Future lepton colliders (CEPC): tremendous amount of events + higher precision \Rightarrow possible to trace $Zb\bar{b}$ dipole
- Effective Lagrangian with dim-6 $Zb\bar{b}$ dipole operators

$$\mathcal{L}_{Zb\bar{b}} \supset \frac{g}{c_W} Z_\mu \left(g_{Lb} \bar{b}_L \gamma^\mu b_L + g_{Rb} \bar{b}_R \gamma^\mu b_R \right) + \frac{C_{dW}}{\Lambda^2} O_{dW} + \frac{C_{dB}}{\Lambda^2} O_{dB} + \dots$$

$$g_{Lb} = g_{Lb}^{SM} + \delta g_{Lb}, \quad g_{Rb} = g_{Rb}^{SM} + \delta g_{Rb}$$

• Z pole observables

GEDG

$$R_{b} = \frac{\Gamma(Z \to dd)}{\sum_{q} \Gamma(Z \to q\bar{q})}$$

$$A_{\ell} = \frac{\Gamma(Z \to \ell_{L}\bar{\ell}_{L}) - \Gamma(Z \to \ell_{R}\bar{\ell}_{R})}{\Gamma(Z \to \ell\bar{\ell})}$$

$$A_{b} = \frac{\Gamma(Z \to b_{L}\bar{b}_{L}) - \Gamma(Z \to b_{R}\bar{b}_{R})}{\Gamma(Z \to b\bar{b})}$$

$$A_{FB}^{b} = \frac{3}{4}A_{\ell}A_{b}$$

· Off pole scattering

$$A_{FB}^b = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

Quantity	CEPC precision	Runs
R_b	$1.5 \times 10^{-5} (1.5 \times 10^{-5})$	Z pole
A_e	$20 \times 10^{-5} (3 \times 10^{-5})$	Z pole
A_b	$0.0002(5 \times 10^{-6})$	Z pole
$\sigma(b\bar{b})$ [fb]	275.64 ± 0.1174	$\sqrt{s} = 240 \text{ GeV}$
$A_{FB}(b\bar{b})$	0.592 ± 0.0003434	$\sqrt{s} = 240 \text{ GeV}$
$\sigma(b\bar{b})$ [fb]	108.33 ± 0.329	$\sqrt{s} = 360 \text{ GeV}$
$A_{FB}(b\bar{b})$	0.602 ± 0.002425	$\sqrt{s} = 360 \text{ GeV}$

 $(\,[c_{\theta}^{min},c_{\theta}^{max}]{=}[{-}0.9{,}0.9],\,\epsilon=0.15\,)$

[Snowmass arXiv:2205.08553, 2206.08326]

ъ

$Zb\overline{b}$ dipole and χ^2

- For convenience, set $\Lambda = 1$ TeV and only keep real parts of dipole Wilson coefficients (unit: $(\Lambda / TeV)^2$)
- SMEFTsim package was used to extract dipole coupling and calculate observables [Brivio et al. 2012.11343]

$$\begin{split} \delta \Gamma^{\text{dipole}}_{Vbb} &= \mathrm{i} \sigma^{\mu\nu} k_{\nu} \bar{b} \left(g_{\mathrm{L}}^{\nu} P_{\mathrm{L}} + g_{\mathrm{R}}^{\nu} P_{\mathrm{R}} \right) b \varepsilon_{\mu}^{\nu} \\ g_{\mathrm{L}}^{Z} &= g_{\mathrm{R}}^{Z*} = \frac{1}{\sqrt{2} \Lambda^{2}} \left(\cos \theta_{w} C_{dW}^{*} + \sin \theta_{w} C_{dB}^{*} \right) \\ g_{\mathrm{L}}^{\gamma} &= g_{\mathrm{R}}^{\gamma*} = \frac{1}{\sqrt{2} \Lambda^{2}} \left(\cos \theta_{w} C_{dB}^{*} - \sin \theta_{w} C_{dW}^{*} \right) \end{split}$$

• Previous observables on Z pole and off pole scattering were used to construct χ^2

$$\chi^2 = \sum_i \left(\frac{x_i - x_0}{\Delta x_i}\right)^2$$

χ^2 constrain analysis

Present Z pole data (PDG) vs CEPC Z pole estimation

χ^2 constrain analysis

```
CEPC @ \sqrt{s} = 240 and 360 GeV
```


Tan, Xiaoze (FDU)

χ^2 constrain analysis

Combine Z pole & $\sqrt{s} = 240$ GeV run

• $C_{dB} = [-0.608, 0.599], C_{dW} = [-0.336, 0.311]$

Quadratic items effect

e.g. $\sqrt{s} = 240 \text{ GeV run}$

• *
$$C_{dB}^2$$
, C_{dW}^2 , $C_{dW}C_{dB}$

Summary

- Small gaps on EW measurements with theory
 - Existing $Zb\bar{b}$ measurements are still not consistent with SM very well (A_{FB}).
 - Possible BSM corrections($\delta g_{Lb}, \delta g_{Lb} \dots$) exist.

• SMEFT & dipole

- SMEFT is an effective tool to parameterize BSM effects in the EW scale (model independent).
- dim-6 dipole operators could also contribute to the small A_{FB} inconsistency.
- Dipoles are usually overlooked in global fit and other analysises. Except top (heavy) $\Rightarrow ttZ/\gamma$ at LHC $\Rightarrow C_{uw}^{33} = [-1.2, +1.4]$ and $C_{uR}^{33} = [-1.9, +1.2](\Lambda/\text{ TeV})^2$

• CEPC offers opportunity to trace $Zb\bar{b}$ dipole

- Pole measurements ⇒ only flat constrain.
- Off pole measurement \Rightarrow interference of γ and Z diagram \Rightarrow possible closed constrain.
- · Quadratic items could have contribution.
- Our pre-estimation (Z pole + 240 GeV): $C_{dw}^{33} = [-0.608, 0.599], C_{dB}^{33} = [-0.336, 0.311](\Lambda / \text{TeV})^2$.

• More efforts are needed and in progress

- Further combined analysis, distributions ...
- More off pole analysises at other future lepton colliders ...

Thank you!

Backups

${\cal L}_6^{(6)}-\psi^2 X H$			
Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \sigma^i H W^i_{\mu\nu}$		
Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$		
Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \widetilde{H} G^a_{\mu\nu}$		
Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \sigma^i \widetilde{H} W^i_{\mu u}$		
Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$		
Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$		
Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$		
Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$		

[arXiv:2012.11343]

Dipole operators of dim-6 SMEFT in the Warsaw basis.

Global SMEFT fit

[arXiv:2206.08326]

EWPOs CEPC

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	17.8*	17.8*		3.8 (1.2)	17.8*	
Δm_W (MeV)	12*	0.5(2.4)		0.25(0.3)	0.35(0.3)	
Δm_Z (MeV)	2.1*	0.7(0.2)	0.2	0.004 (0.1)	0.005(0.1)	2.1^{*}
Δm_H (MeV)	170*	14		2.5 (2)	5.9	78
$\Delta \Gamma_W$ (MeV)	42*	2		1.2(0.3)	1.8(0.9)	
$\Delta \Gamma_Z$ (MeV)	2.3^{*}	1.5(0.2)	0.12	$0.004 \ (0.025)$	0.005(0.025)	2.3^{*}
$\Delta A_e ~(\times 10^5)$	190*	14(4.5)	1.5(8)	0.7 (2)	1.5	64
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82(4.5)	3 (8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86(4.5)	3 (8)	0.5 (20)	1.2(6.9)	570
$\Delta A_b (\times 10^5)$	2000*	53 (35)	9 (50)	2.4 (21)	3 (21)	380
$\Delta A_c (\times 10^5)$	2700*	140(25)	20 (37)	20 (15)	6 (30)	200
$\Delta \sigma_{\rm had}^0$ (pb)	37*			0.035 (4)	0.05(2)	37*
$\delta R_e (\times 10^3)$	2.4^{*}	0.5(1.0)	0.2(0.5)	0.004 (0.3)	0.003(0.2)	2.7
$\delta R_{\mu} (\times 10^3)$	1.6^{*}	0.5(1.0)	0.2(0.2)	0.003(0.05)	0.003(0.1)	2.7
$\delta R_{\tau} (\times 10^3)$	2.2^{*}	0.6(1.0)	0.2(0.4)	0.003(0.1)	0.003(0.1)	6
$\delta R_b \ (imes 10^3)$	3.0^{*}	0.4(1.0)	0.04(0.7)	0.0014 (< 0.3)	0.005(0.2)	1.8
$\delta R_c(imes 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6

Table 3: EWPOs at future e^+e^- : statistical error (experimental systematic error). Δ

CEPC \sqrt{s} [GeV]	Final state	$\mathcal{L} \left[\mathrm{fb}^{-1} \right]$	σ [fb]	A_{FB}	$[c_{\theta}^{\min},c_{\theta}^{\max}]$	e	
240	e^-e^+		$77330.4 {\pm} 1.937$	$0.96{\pm}0.00000694$	[-0.9, 0.9]	0.98	
	$\mu^{-}\mu^{+}$	5000	$1870.84{\pm}0.306$	$0.521{\pm}0.0001395$	[-0.95, 0.95]	0.98	
	$\tau^-\tau^+$		$1589.15 {\pm} 0.282$	$0.506 {\pm} 0.000153$	[-0.9, 0.9]	0.9	
	cc		$93.38 {\pm} 0.0683$	$0.62 {\pm} 0.000574$	[-0.9, 0.9]	0.03	
	$b\overline{b}$		$275.64{\pm}0.1174$	$0.592{\pm}0.0003434$	[-0.9, 0.9]	0.15	
360	e^-e^+		35147.9 ± 5.85	$0.957 {\pm} 0.0000482$	[-0.9, 0.9]	0.98	
	$\mu^{-}\mu^{+}$		810.18 ± 0.9	$0.4885 {\pm} 0.00097$	[-0.95, 0.95]	0.98	[arXiv:2206.08326]
	$\tau^{-}\tau^{+}$	1500	$688.17 {\pm} 0.83$	$0.474 {\pm} 0.001061$	[-0.9, 0.9]	0.9	
	$c\overline{c}$		39.22 ± 0.198	$0.596 {\pm} 0.004056$	[-0.9, 0.9]	0.03	
	$b\overline{b}$		108.33 ± 0.329	0.602 ± 0.002425	[-0.9, 0.9]	0.15	

 O_{uB} and O_{uW}

$$\begin{split} g_{\rm L}^{\gamma} &= g_{\rm R}^{\gamma*} = -\frac{\sqrt{2}\,m_{t}\,\upsilon}{\Lambda^{2}} \left(c_{\rm W} C_{uB\phi}^{33*} + s_{\rm W} C_{uW}^{33*} \right), \\ g_{\rm L}^{Z} &= g_{\rm R}^{Z*} = -\frac{e\,m_{t}\,\upsilon^{2}}{\sqrt{2}s_{\rm W} c_{\rm W} M_{Z}\Lambda^{2}} \left(c_{\rm W} C_{uW}^{33*} - s_{\rm W} C_{uB\phi}^{33*} \right), \end{split}$$

Fig. 3 Angular asymmetries $A_{\theta_1^0}(-0.1)$ (left) and $A_{\alpha}(0.0)$ (middle) as a function of the two Wilson coefficients in $t\bar{t}$ production relative to the their SM values. Right χ^2 combination of the two asymmetries assuming an uncertainty of $\pm 4\%$

χ^2 constrain analysis backup

Present Z pole data (PDG) vs CEPC Z pole estimation