

Institute of High Energy Physics Chinese Academy of Sciences

The 2023 International Workshop on CEPC @Oct 23 – 27, 2023 Nanjing

SUSY search prospects at CEPC

Da XU (IHEP, CAS)

Supersymmetry

A fundamental theory which unifies fermions (matter) and bosons (forces)

Where does SUSY hide?

Hadron collider

Lepton collider

* For slepton prod. of 100 GeV, the production rates at both the LHC and CEPC are on a similar scale (~10^-1 pb); in this context, lepton collider demonstrates comparable or even significant potential for exploring the low mass region.

In EU strategy

CERN-ESU-004

- * Typically, the discovery power is constrained by the detector kinematic limit: $\sqrt{s/2}$.
- * Still uncovered phase space for HL-LHC..

SUSY search @LHC vs CEPC

5

- The electroweak SUSY search is of great interest at CEPC: the generic searches for wino/higgsino/bino/slepton, as well as the relevant dark matter searches.
- * Comparing to LHC, CEPC has
 - Well-defined energy, momentum and polarization
 - High-precision measurements
 - Clean environment
 - Superior sensitivity for electroweak stats, especially in probing super compressed scenarios which is extremely challenge in hadron collider

Today's menu

* A substantial amount of ongoing research and activity focused on SUSY in CEPC

Wino/binoarxiv:2105.06135Higgsinoarxiv:2105.06135SmuonSmuonStauarxiv:2203.10580Off-shell Smuonarxiv:2211.08132Right-handed off-shell selectronarxiv:2211.08132Bino NLSParxiv:2101.12131

* A challenge scenario for LHC experiment in the low mass region!

(b) $P_T^{\mu^-} (P_T^{\mu^-} > 30 \text{ GeV})$

- Background after preSel: peak ~ Z(->mumu) mass region and tend to have large deltaR
- Recoil system is then defined as all particles except two OS muons
- Mrecoil: high in signal case due to large missing energy -> most powerful cut
- * $P\mu^{\pm} > 30$ GeV: suppress soft background muon processes
 - Dominant background in SR: ZZ or WW $\rightarrow \mu\mu\nu\nu$ and $\mu\mu$

Signal Region				
== 2 muons (OS, both energy $> 10 \text{ GeV}$)				
$0.4 < \Delta R(\mu^+, \mu^-) < 1.6$				
$P_T^{\mu^{\pm}} > 30 \text{ GeV}$				
$M_{recoil} > 130 \text{ GeV}$				

Wino-bino search

- * Great discovery sensitivity coverage, up to the detector constraint.
- * Perfectly fill in the full ATLAS gap region. No large impact from the uncertainty on the discovery sensitivity.

* Motivated by Naturalness; challenge in compressed region.

- Unlike wino-bino, the higgsino signal has much softer muons due to small signal mass splitting -> low Eµ
- Mrecoil: much significant for signal
- A list of angle discriminants:
 i.e. |Δφ(μ,μ)|: suppress the back-to-back di-muon events
- * Dominant background: $\tau\tau$

Higgsino search

- * Nice discovery sensitivity coverage, up to the detector constraint.
- * Interpreted in both μ-tanβ and C1-dM scenarios. According to the current result, there are large potential to explore to even compressed region.

Smuon/Stau search

 e^{\pm}

 e^{\mp}

 τ^{\pm}

 τ^{\mp}

- * Explore soft smuon/stau in CEPC.
- For each case, 3 SR categories according to different mass splitting.
- For high dM, high μ/τ energy;
 For low dM, high Mrecoil

	SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM				
	== 2 muons (OS, both energy $> 0.5 \text{ GeV}$)						
-	$E_{\mu} > 40 \text{ GeV}$	$9 \mathrm{GeV} < E_{\mu} < 48 \mathrm{GeV}$	-				
	$\Delta R(\mu, recoil) < 2.9$	$(recoil) < 2.9$ $1.5 < \Delta R(\mu, recoil) < 2.8$					
240	$M_{\mu\mu} < 60 \text{ GeV}$	$M_{\mu\mu} < 80 \text{ GeV}$	-				
il	$M_{recoil} > 40 \text{ GeV}$	-	$M_{recoil} > 220 \text{ GeV}$				
		The Control of the Co					

Smuon search

 With flat 5% systematic, the discovery sensitivity can reach up to <u>117 GeV</u> in smuon mass. Fill in the LHC challenge region. No large impact from the uncertainty.

Stau search

 For direct stau production with left-/right- combined(only) stau, assuming flat 5% systematic uncertainty, the discovery sensitivity can reach up to <u>116 GeV (113 GeV)</u> in stau mass. Great power to fill the LHC gap!

Smuon/Stau search

'n,

Bino-NLSP

- * Light bino pairs produced in lepton collider
- * Scenario with gravitino as LSP and bino as NLSP
- Search for final states with 2photons+missing energy
- * Background: SM t-channel W, s-channel Z
- Key discrimination: recoiled mass (reject Z), reconstructed bino mass, energy balance (small for heavy bino)

Bino-NLSP

- * A bino mass around 100 GeV can be probed at the 5σ level for a slepton below 1.5 TeV.
- * For a bino mass around 10 GeV, a slepton mass less than 3 TeV can be probed at the 5σ level, which is much beyond the LHC reach.

Right-handed off-shell selectron

- * Green: Higgs mass bounds and rare B-meson constraints
- * Red: + dark matter relic density bound —> implies N1 mass matches Z-pole ($m_{x_1^*} \approx 1/2m_z$) and Higgs-pole ($m_{x_1^*} \approx 1/2m_b$).

- * Search for $e_{R}^{+}e_{R}^{-} \rightarrow \chi_{1}^{-}(bino) + \chi_{1}^{-}(bino) + \gamma$ with t-channel process mediated by an offshell right-handed slepton
- * Final states with missing transverse energy induced plus an emissive mono-photon
- Background: Z(νν)γ (neglecting W as mediator)

Photon isolation is applied

Right-handed off-shell selectron

* For Z-pole (Higgs-pole) case, the right-handed selectron can be excluded up to 180 (140) GeV at 3σ.
* Nicely break through the collision energy and probe heavier selectrons.

SR	SRL-01	SRL-02	SRM-01	SRM-02
		$m_{\rm RC}^{\rm max} > 117$	$m_{ m RC}^{ m min} > 85$	$m_{\text{LSP}}^{\text{max}} \in [50, 70]$
	$m_{ m RC}^{ m min}>\!\!85$	$m_{ m RC}^{ m min}>95$	$m_{\text{LSP}}^{\text{max}} \in [40, 60]$	$m_{\rm RC}^{\rm max}(40) > 110$
		$E_{\mu^{\pm}} \in [50, 70]$	$m_{\rm RC}^{\rm max}(40) > 110$	$m_{ m RC}^{ m min}(40) > 100$
SM total	7532 ± 86	900 ± 30	2079 ± 45	970 ± 31
SGN(0)	38900	10900	6360	2270
SGN(40)	23800	1410	22100	10200
SGN(80)	0	0	0	0
SGN(110)	0	0	0	0

- Study a specific decay topology: the system with a pair of massive particles P, each decaying into visible V and invisible particle(s) I: i.e. smuon pair production
- The recoil system R comprises all observable particles that are not assigned to the main system, i.e. ISR, imperfect object recon.
- * This analysis is focusing on off-shell smuon region!
- A new set of kinematics are developed reconstruct the mass of semi-invisible decaying particles
- * 12 SR bins are designed targeting various kinematic regions

Off-shell Smuon

- * Large drop of cross-section when entering into the off-shell region.
- * The detection (discovery) limit for a smuon can reach up to 126 GeV (122 GeV). The limit break through the line of $\sqrt{s/2}$ and go into the off-shell region.

Summary

- * Various prospective searches for electroweakinos have been explored with CEPC experimental environment.
- * The discovery potential is typically restricted by the detector's kinematic limitations. However, in-depth studies of off-shell or tchannel interactions can surpass these energy constraints and provide insights into heavier particles.
- * These studies can serve as valuable references for other lepton colliders such as the ILC and FCC-ee etc.
- * A lepton collider is not solely a precision-measurement machine; it possesses a unique advantage in exploring the challenging scenarios that may prove difficult for hadronic colliders.

Extra slides