

The study of nTGCs in Z+photon at the CEPC CEPC Workshop 2023 @ Nanjing

<u>Danning Liu,</u> Shu Li

Tsung-Dao Lee Institute, Shanghai Jiao Tong University

Outline

- CEPC detector
- Neutral Triple Gauge Couplings
- Monte Carlo Samples
- Signal Extraction
 TG
- Systematics
- Results
- Additional Materials

- CEPC (90-240 GeV)
 - W & Z and Higgs factories (~4 Tera Z bosons, 4 M higgs)

LTB: Linac to Booster BTC: Booster to Collider Ring

- Advantages ٠
 - Well defined energy and momentum, rather clean environment compare to Hadron Colliders Proton Linac IP3

IP1

e+

- High Statistics, provides multiple possibilities
 - More precisely measurements (test of the SM parameters or absolute measurement of gauge bosons)
 - Search for exotic decay modes, rare processes and other new BSM physics

IP2

CEPC Experimental Overview from Mangi Ruan

Neutral Triple Gauge Couplings (nTGCs)

Chinese Phys. C 44 063106

- Don't appear in the SM Lagrangian, nor in the dimension-6 Lagrangian of the SMEFT
- First appear through the gauge-invariant dimension-8 operators in the SMEFT

$$\Delta L(dim - 8) = \sum_{j} \frac{\tilde{c}_{j}}{\tilde{\Lambda}^{4}} \mathcal{O}_{j} = \sum_{j} \frac{sign(\tilde{c}_{j})}{\Lambda_{j}^{4}} \mathcal{O}_{j} = \sum_{j} \frac{1}{[\Lambda_{j}^{4}]} \mathcal{O}_{j}$$

General dimension-8 SMEFT Lagrangian

 $^{\Lambda\Lambda\Lambda\Lambda}$

- Highlight of nTGCs
 - Based on the latest formulation proposed by Prof. John Ellis, Prof. Hong-Jian He and Dr. Rui-Qing Xiao with fully gauged invariant treatment SU(2)×U(1)
 - Designed for on-shell scenario
 - Two extra dimension-8 operators O_{G+} , O_{G-} are needed to make correct transformation
 - A unique window to explore new physics beyond the SM,

See more details in *Ruiqing's talk*

27/10/2023

Operators in nTGC model

$$\Gamma^{\alpha\beta\mu(8)}_{Z\gamma V^*}(q_1, q_2, q_3) = \frac{e(q_3^2 - M_V^2)}{M_Z^2} [(h_3^V + h_5^V \frac{q_3^2}{M_Z^2})q_2\epsilon^{\alpha\beta\mu\nu} + \frac{h_4^V}{M_Z^2}q_2^\alpha q_{3\nu}q_{2\sigma}\epsilon^{\beta\mu\nu\sigma}]$$

- Dimension-8 operators : $O_{G+}, O_{G-}, O_{\tilde{B}W}$ (CP-conserving)

$$\begin{split} g \mathcal{O}_{G+} &= \tilde{B}_{\mu\nu} W^{\alpha\mu\rho} (D_{\rho} D_{\lambda} W^{\alpha\nu\lambda} + D^{\nu} D^{\lambda} W^{\alpha}_{\lambda\rho}) \\ g \mathcal{O}_{G-} &= \tilde{B}_{\mu\nu} W^{\alpha\mu\rho} (D_{\rho} D_{\lambda} W^{\alpha\nu\lambda} - D^{\nu} D^{\lambda} W^{\alpha}_{\lambda\rho}) \\ \mathcal{O}_{\tilde{B}W} &= i H^{\dagger} \tilde{B}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H + H . c \,. \end{split}$$

Transformation

$$h_4 = -\frac{\operatorname{sign}(\tilde{c}_{G+})}{\Lambda_{G+}^4} \frac{v^2 M_Z^2}{s_W c_W}$$
$$h_3^Z = \frac{\operatorname{sign}(\tilde{c}_{BW})}{\Lambda_{\tilde{B}W}^4} \frac{v^2 M_Z^2}{2s_W c_W}$$
$$h_3^\gamma = -\frac{\operatorname{sign}(\tilde{c}_{G-})}{\Lambda_{G-}^4} \frac{v^2 M_Z^2}{2c_W^2}$$

Conversion

Convert constraints from SMEFT approach to Effective Vertex approach

See more theory details in *Ruiqing's talk*

 JE, GE, HE & Xiao, arXiv : 1902.06631

 JE, HE & Xiao, arXiv : 2008.04298

 JE, HE & Xiao, arXiv : 2206.11676

 Phys. Rev. D 107 035005 (2023) with "Editor's suggestion"

 John's talk at the LHC EWK-MB meeting

27/10/2023

nTGCs searches at CEPC

Signal Extraction

- Signal signatures : 2 Opposite Sign Same Flavour leptons and at least one signal photon
- Other requirements :
 - At least 1 selected photon
 - $p_T^{\gamma} > 35 \text{ GeV}$
 - Two isolated leptons
 - $\Delta R(l, l) < 3$
 - Leptons decayed from Z bosons
 - $|m_{ll} m_Z| < 10 \, {\rm GeV}$
 - Low mass resonance suppressed
 - $(m_{ll} + m_{ll\gamma}) > 182 \text{ GeV}$
 - Higher order contribution suppressed

• $N_{jet} = 0$

 $\Delta R(I,I)$

D. Liu | nTGC study in CEPC workshop @ Nanjing

m_{Zy} [GeV]

Signal Extraction

- The cut-based approach proposed previously has been applied to both signal and background samples
 - Cross-sections [fb] of different processes are listed after each cut
 - Signal : EFT $Z + \gamma$ ($O_{G+}, O_{G-}, O_{\tilde{B}W}$) -
 - Background
 - SM $Z + \gamma$
 - Other background : 2 fermions (dominant), 4 fermions and Higgs backgrounds

 Z / γ^*

z

m

· 22 ·

27/10/2023

Systematic Uncertainty

- Systematic uncertainty are categorised into two types
- Assigned on **signal** yields
 - Theoretical uncertainty : Assume a 0.5% uncertainty on the signal yields for modelling (<u>Chinese Phys. C 47 043002</u>)
 - Experimental uncertainty : (Chinese Phys. C 47 043002 and Chinese Phys. C 44 013001)
 - Uncertainties from both luminosity, lepton identification and detector acceptance are considered to be small
 - Uncertainties from object reconstruction, identification and energy scale/resolution are assigned by assuming 1% for photon, and for leptons are estimated by varying m_{ll} selection up/down by 1 GeV
- Assigned on **background** yields
 - Event yields of all kinds of backgrounds are conservatively considered by varying 5% up/down for dominant process and 50% for other process (<u>Chinese Phys. C 44 013001</u>)

Limit setting with *EFTFitter*

- The expected limits for both SMEFT and Effective Vertex approaches are shown here :
 - The expected limits are extracted from $\phi^{\,*}\,$ distribution
 - Defined as the value of nTGCs that demarcate the central 95% of the integral of the likelihood distribution
 - The outer range is excluded

 ϕ *: appeared due to the interference between pure SM and BSM

SMEFT	Expected Limits [TeV-4]	Form Factor	Expected Limits [TeV-4]
O_{G+}	[-1.30, 1.34]	h_4^γ	$[-8.7 \times 10^{-4}, 8.5 \times 10^{-4}]$
		h_4^Z	$[-1.6 \times 10^{-3}, 1.6 \times 10^{-3}]$
O_{G-}	[-5.95, 5.93]	h_3^{γ}	$[-1.9 \times 10^{-3}, 1.9 \times 10^{-3}]$
$O_{ ilde{B}W}$	[-21.41, 21.36]	h_3^Z	$[-1.3 \times 10^{-2}, 1.3 \times 10^{-2}]$

$$h_4 = -\frac{\operatorname{sign}(\tilde{c}_{G+})}{\Lambda_{G+}^4} \frac{v^2 M_Z^2}{s_W c_W}$$
$$h_3^Z = \frac{\operatorname{sign}(\tilde{c}_{BW})}{\Lambda_{BW}^4} \frac{v^2 M_Z^2}{2s_W c_W}$$
$$h_3^\gamma = -\frac{\operatorname{sign}(\tilde{c}_{G-})}{\Lambda_{G-}^4} \frac{v^2 M_Z^2}{2c_W^2}$$

27/10/2023

Limit setting with EFTFitter

Extracted experimental constraints from CEPC for dimension-8 operators for 1D scenario

Outer range is excluded @ 95% C.L.

 2D limits are also extracted for pairs of dimension-8 operators to study the correlation of sensitivity reaches between pairs of dimension-8 operators, constraints are displayed as format of contour plots and converted to limits of form factors

27/10/2023

Summary

- A search for Neutral Triple Gauge Couplings in $Z + \gamma$ channel with Z leptonic decays is performed with 5 ab^{-1} simulation data with CEPC
- Cut-based approach applied and optimised to get better sensitivity
- A more realistic study is carried out with a weaker exclusion limit compared to the theoretical predictions
- This study with 2 charged lepton plus 1 photon could help to understand the electroweak symmetry mechanism and also provide an experimental test for new formulation
- Future plan
 - Finish journal submission at the end of this year
 - More possibilities ? off-shell ?

Thank you for attention !

Additional Materials

Detector and Reconstruction

Monte Carlo Samples

- Signal samples
 - $O_{G+}, O_{G-}, O_{\tilde{B}W}$ (CP-conserving)
 - Generated with MadGraph5 and Pythia8
 - Simulated with CEPC_V4 framework based on GEANT4
- Background samples
 - 2 fermions (dominant)
 - 4 fermions
 - Higgs
 - Fast simulated with **Delphes**

arXiv : 1712.09517

	Processes	Final States	$\sigma~[{ m fb}]$
	11	$e^+e^-/\mu^+\mu^-/ au^+ au^-$	34856.50
2 fermions	$\nu \nu$	$ u_e ar{ u}_e / u_\mu ar{ u}_\mu / u_ au ar{ u}_ au$	50499.51
	qq	u ar u / d ar d / c ar c / s ar s / b ar b	54106.86
	WW(hadronic decay)		3825.46
	WW(leptonic decay)		403.66
1 formiona	WW(semi-leptonic decay)		4846.99
4 1011110115	ZZ(hadronic decay)		516.67
	ZZ(leptonic decay)		67.81
	ZZ(semi-leptonic decay)		556.59
	e1e1h	$e^+e^- + H$	7.04
	e2e2h	$\mu^+\mu^- + H$	6.77
Higgs	e3e3h	$\tau^+\tau^- + H$	6.75
	\mathbf{nnh}	$ u_e ar{ u}_e / u_\mu ar{ u}_\mu / u_ au ar{ u}_ au + \mathrm{H}$	46.29
	qqh	$u\bar{u}/d\bar{d}/c\bar{c}/s\bar{s}/b\bar{b}+\mathrm{H}$	136.81

Decomposition Closure

 Decomposition (parameterisation) $|A|^{2} = |A_{SM} + (C/\Lambda^{4})A_{BSM}|^{2}$

SM term

$$= |A_{SM}|^{2} + (C/\Lambda^{4}) 2Re(A_{SM}^{\dagger}A_{BSM}) + (C^{2}/\Lambda^{8}) |A_{BSM}|^{2}$$

Interference Term

Quadratic Term

Decomposition controlled by NP

• $NP^2 = 1$: Interference Term

•
$$NP = 1$$
 : Quadratic Term

Good agreement observed ! ٠

27/10/2023

• To study the correlation of sensitivity reaches between pairs of dimension-8 operators

Variables	SM Backgrounds	SM $Z + \gamma$	$\left[O_{G+},O_{G-}\right]$	$[O_{G-}, O_{ ilde{B}W}]$	$[O_{G-},O_{ ilde{B}W}]$
$N_{pho} \ge 1$	11712.2	1571.54	2614.01	2505.51	3811.12
$N_{lep}=2$	1151.58	587.08	1224.99	1177.15	1998.57
$N_{jet}=0$	810.95	586.65	1223.71	1176.05	1995.92
$\Delta R(l,l) < 3$	698.00	548.39	1178.57	1125.87	1929.37
$ m_{ll}-m_Z <10~{\rm GeV}$	302.80	192.28	750.50	717.212	1441.24
$(m_{ll} + m_{ll\gamma} > 182) \mathrm{GeV}$	299.99	192.28	750.50	717.212	1441.24

Cut-flow table

27/10/2023

Limits setting

- This study is a more realistic search compared to theoretical predictions
 - With detector simulation, response added
 - With object reconstruction, identification, resolution effect/efficiencies added
 - With different sources of systematic uncertainties added
 - •
 - A weaker exclusion limit extracted

Theory	Expected Limits	Experiment	Expected Limits
$\Lambda^{2\sigma}_{C_{G^+}}/TeV$	—	$\Lambda^{2\sigma}_{C_{G^+}}/TeV$	0.96
$\Lambda^{2\sigma}_{C_{G^-}}/TeV$	—	$\Lambda^{2\sigma}_{C_{G^-}}/TeV$	0.64
$\Lambda^{2\sigma}_{C_{\widetilde{B}W}}/TeV$	0.60	$\Lambda^{2\sigma}_{C_{ ilde{B}W}}/TeV$	0.47

Chinese Phys. C 44 063106

