On the NNLO electroweak corrections to ee \rightarrow HZ production

A. Freitas (U. Pittsburgh)

- Introduction
- Computational approach
- UV divergences
- Numerical results
- Conclusions

A. Freitas and Q. Song, JHEP 04 (2021) 179 [arXiv:2101.00308]

A. Freitas and Q. Song, PRL 130, 031801 [arXiv:2209.07612]

A. Freitas, Q. Song and K. Xie, PRD 108, 053006 [arXiv:2305.16547]

Introduction

- ► ee→HZ: dominant Higgs production process at e+e- colliders below 500 GeV
- Expected precision:

ILC	1.2%	[1903.01629]
CEPC	0.5%	[1811.10545]
FCC-ee	0.4%	[EPJ ST 228, 261

Need higher-order corrections:

- Total

7H

CEPC 2018

σ [fb]

	$\alpha(0)$ scheme	G_{μ} scheme	
$\sigma^{\rm LO}$ [fb]	223.14	239.64	
$\sigma^{\rm NLO}$ [fb]	229.78	232.46	
$\sigma^{\text{NNLO,EW} \times \text{QCD}}$ [fb]	232.21	233.29	Gond
			Ciong

EW NNLO expected O(1%)

Chen, Feng, Jia, Sang '18

Introduction

- Higher-order calculations in electroweak SM are challenging (many mass scales: m_z, m_w, m_H, m_t)
- Analytic calculations:
 - IBP reduction to master integrals: large expressions and computing resources
 - Complete function space of master integrals unknown (harmonic polylogs, iterated elliptic integrals, ...)
- Numerical calculations (e.g. in momentum or Feynman par. space)
 - Multi-dim. integration space, slowly converging
- New approaches using series solutions of diff. eqs.
 - still require IBP reduction

[Liu, Ma, Wang, 1711.09572] [Moriello, 1907.13234] [Hidding, 2006.05510] [Liu, Ma, 2201.11669]

This work: semi-numerical approach, tailored for EW 2-loop problems

Computational approach

Basic idea: use dispersion relation for sub-loop

$$- \bigcirc - = B_0(p^2, m_1^2, m_2^2) = \int_{(m_1 + m_2)^2}^{\infty} \mathrm{d}\sigma \, \frac{\Delta B_0(\sigma, m_1^2, m_2^2)}{\sigma - p^2 - i\epsilon},$$
$$\Delta B_0(\sigma, m_1^2, m_2^2) \equiv \frac{1}{\pi} \mathrm{Im} \, B_0(\sigma, m_1^2, m_2^2)$$

[Bauberger, Berends, Bohm, Buza, hep-ph/9409388]

Computational approach

- Basic idea: use dispersion relation for sub-loop
- including numerator terms:

$$\left[\frown \frown \Box \right]_{\mathsf{T}} = \int d\sigma \, \frac{c_0 \Delta B_0(\sigma, \ldots) + c_1 \Delta B_1(\sigma, \ldots) + c_{00} \Delta B_{00}(\sigma, \ldots) + \ldots}{\sigma - p^2 - i\epsilon}$$

$$\underbrace{ \left(\begin{array}{c} e^{-} \\ w \\ e^{+} \end{array} \right) }_{W_{e}} \underbrace{ \left(\begin{array}{c} e^{-} \\ w \\ w \\ e^{+} \end{array} \right) }_{H} \end{array} = - \int d\sigma \left[c_{0} \Delta B_{0} + c_{1} \Delta B_{1} + c_{00} \Delta B_{00} + \ldots \right] \\ \times \left[a_{1} D_{0} + a_{2} D_{1} + \ldots + a_{n} C_{0} + a_{n+1} C_{1} + \ldots \right]$$

(coefficients depend on masses, external momenta and σ)

Computational approach: box diagrams

Introduce Feynman parameters

$$\bullet \mathbf{q}_2 \operatorname{loop} = \int dx \, dy \, \frac{\partial^2}{\partial (m'^2)^2} \int_{\sigma_0}^{\infty} d\sigma \, \frac{\Delta B_0(\sigma, m'^2, m_{q'}^2)}{\sigma - \tilde{q}_1^2}$$

$$\tilde{q}_1 = q_1 + k' + i\epsilon,$$

 $m'^2 = m_t^2 - xy(k_1 + k_2)^2 - (1 - x - y)(xk_1^2 + yk_2^2).$

Derivatives of ΔB_0 can be easily computed

 Similarly use Feynman pars. for other box and vertex diagrams

Computational approach: box diagrams

Introduce Feynman parameters

$$\bullet \ \mathbf{q}_2 \ \mathbf{loop} \ = \int dx \, dy \ \frac{\partial^2}{\partial (m'^2)^2} \int_{\sigma_0}^{\infty} d\sigma \ \frac{\Delta B_0(\sigma, m'^2, m_{q'}^2)}{\sigma - \tilde{q}_1^2}$$

$$\tilde{q}_1 = q_1 + k' + i\epsilon,$$

 $m'^2 = m_t^2 - xy(k_1 + k_2)^2 - (1 - x - y)(xk_1^2 + yk_2^2).$

• Problem: m'^2 can in general become negative!

$$q_1+p_1$$

 q_1+p_1
 q_1+p_1
 q_1+p_1
 q_1+p_1
 q_1
 $k'_2 = xk_1+(1-y)k_2$
 q_2+k'
 $k'_1 = (1-x)k_1+yk_2$

Computational approach: box diagrams

 $m_1^2 > 0$, $m_2^2 < 0$ $m_1^2 \ge 0$, $m_2^2 \ge 0$ $\operatorname{Im} \sigma$ $Im \sigma$ integration contours $p^2 + i\epsilon$ Re\sigma $(m_1+m_2)^2$ - $(m_1+m_2)^2$ branch cut from **B0** function formulas $B_0(p^2, m_1^2, m_2^2) = \frac{1}{2\pi i} \oint_C d\sigma \frac{B_0(\sigma, m_1^2, m_2^2)}{\sigma - p^2 - i\epsilon}$ $B_0(p^2, m_1^2, m_2^2) = \frac{1}{2\pi i} \oint d\sigma \frac{B_0(\sigma, m_1^2, m_2^2)}{\sigma - p^2 - i\epsilon}$ $=\frac{1}{2\pi i}\int_{-\infty}^{+\infty}d\sigma \frac{B_0(\sigma,m_1^2,m_2^2)}{\sigma-m_1^2-i\epsilon}$ $= \int_{\alpha}^{\infty} d\sigma \frac{\Delta B_0(\sigma, m_1^2, m_2^2)}{\sigma - n^2 - i\epsilon}$

UV divergences

- UV divergences will cause the num. integral to diverge
- Need to subtract terms so make integral finite
- Subtraction terms simple enough to integrate analytically and add back

$$\begin{split} |M_0 M_2^*| &\sim \int dx \int dy \int d\sigma \times \underbrace{[\text{integrand}]}_{\text{UV div}} \\ &= \int dx \int dy \int d\sigma \times \underbrace{[\text{integrand} - I_{\text{subtra}}]}_{\text{UV finite, integrate numerically}} \\ &+ \int dx \int dy \int d\sigma \times \underbrace{[I_{\text{subtra}}]}_{\text{UV div, integrate analytically}} \end{split}$$

UV divergences

Separate treatment for global divergence and two sub-loop divergences

UV divergences: Example

$$\begin{split} & \mathcal{I} = \int \int \frac{q_1^4}{(q_2^2 - m_{V_2}^2)((q_2 + p)^2 - m_{V_1}^2)((q_2 + q_1)^2 - m_{f_1}^2)(q_1^2 - m_{f_2}^2)((q_1 - p_h)^2 - m_{f_2}^2)((q_1 - p)^2 - m_{f_2}^2)} \\ & \mathcal{I}_{\rm sub}^{\rm glob} = \int \int \frac{q_1^4}{(q_2^2 - m_{V_2}^2)(q_2^2 - m_{V_1}^2)((q_2 + q_1)^2 - m_{f_1}^2)(q_1^2 - m_{f_2}^2)^3} \end{split}$$

- Global divergence:
 Subtract integral with zero external momenta
- 2-loop vacuum integrals known analytically (here using FIRE and TVID)

[A. Smirnov, 2020] [Bauberger and Freitas, 2017]

UV divergences: Example

UV divergences: Example

- Sub-loop divergence:
 Subtract sub-loop in large q₂ limit
- factorizes into product of 1-loop functions

Implementation

Diagram generation with FeynArts

[Hahn, 2001]

- Algebraic manipulations in Mathematica:
 - Construction of integrand (Feynman parameters & dispersion relation) for each diagram type
 - No IBP reduction
 - UV subtraction terms
 - Generate C++ code for subtracted integrand
- Numerical integration in C++
 - Passarino-Veltman functions (D₀, D₁, etc.) from **LoopTools**

[Hahn, Perez-Victoria, 1999]

 Adaptive Gauss integration (>3 digit accuracy in minutes in single core for one diagram type)

Numerical results

- Computed full EW NNLO corrections with closed fermion loops (finite and gauge-invariant subset, typically dominant)
- Universal ISR QED effects factorized
- Final-state Z-boson defined as leading-pole term, final-state Higgs in narrow-width approx.

Numerical results

► Use complex pole mass scheme [e.g. Freitas, Hollik, Walter, Weiglein, hep-ph/0202131]

$m_W^{\rm exp}=80.379~{\rm GeV}$	\Rightarrow	$m_W = 80.352 \text{ GeV},$
$m_Z^{\rm exp}=91.1876~{\rm GeV}$	\Rightarrow	$m_Z=91.1535~{\rm GeV},$
$m_H = 125.1 \text{ GeV},$	m_t =	$= 172.76 { m GeV},$
$\alpha^{-1} = 137.036,$	$\Delta \alpha$:	= 0.059,

$$m_Z = m_Z^{\text{exp}} \left[1 + (\Gamma_Z^{\text{exp}}/m_Z^{\text{exp}})^2 \right]^{-1/2},$$

$$\Gamma_Z = \Gamma_Z^{\text{exp}} \left[1 + (\Gamma_Z^{\text{exp}}/m_Z^{\text{exp}})^2 \right]^{-1/2}.$$

				····				
	(fb)	Contribution	(fb)	120		NLO	NLO, N _f =1+	-2
σ^{LO}	222.958							
$\sigma^{\rm NLO}$	229.893			£ 115	1	LO		
		$O(\alpha_{N_f=1})$	21.130	βsθ				
		$O(\alpha_{N_f=0})$	-14.195	월 110	11			
σ^{NNLO}	231.546			9				NINLO N _f =2
		$O(\alpha_{N_f=2}^2)$	1.881	105			1	N
		$O(\alpha_{N_f=1}^2)$	-0.226		and the second se			1
				100 E	π/4	π/2	3π/4	<u></u> п

Numerical results

Scheme dependence:

[EWxQCD and input pars from Sun, Feng, Jia, Sang, 1609.03995]

	$\alpha(0)$ scheme	G_{μ} scheme
σ^{LO} [fb]	223.14	239.64
$\sigma^{\rm NLO}$ [fb]	229.78	232.46
$\sigma^{\text{NNLO,EW} \times \text{QCD}}$ [fb]	232.21	233.29
$\sigma^{\text{NNLO,EW}}$ [fb]	233.86	233.98

• Corrections smaller in G_{μ} scheme

Very good agreement between two schemes

 $\alpha(0)$ scheme:

$$\begin{split} \alpha &= e^2/(4\pi) \\ g &= \frac{e}{\sin \theta_W} = \frac{e}{\sqrt{1-m_W^2/m_Z^2}} \end{split}$$

$$G_{\mu}$$
 scheme:
 $\frac{G_{\mu}}{\sqrt{2}} = \frac{g^2}{8m_W^2}(1 + \Delta r).$

[∆r from Freitas, Hollik, Walter, Weiglein, hep-ph/0202131]

Conclusions

- ► EW NNLO corrections important for many scattering processes (ee→HZ, ee→WW, pp→l⁺t⁻, ...)
- Semi-numerical technique based on dispersion relations and Feynman parameters
 - Minor resources needed for numerical evaluation
 - Avoids reduction to master integrals
- Fermionic EW NNLO corrections to $ee \rightarrow HZ$ found to be modest in size
 - Scheme dependence much reduced
- Bosonic EW NNLO expected to be numerically less important, but still desirable

Backup

Results for polarized beams

	$e^+_{ m R}e^{ m L}$	$e^+_{\rm L}e^{\rm R}$
$\sigma^{\rm LO}$ [fb]	541.28	350.55
$\sigma^{\rm NLO}$ [fb]	507.92	411.66
σ^{NNLO} [fb]	507.51	418.68
$O(\alpha_{N_f=2}^2)$	1.75	5.77
$O(\alpha_{N_f=1}^2)$	-2.15	1.25

Error estimate

- Main theory uncertainty: missing bosonic NNLO corrections
- Partial estimates:

Difference btw. $\alpha(0)$ and G_{μ} schemes	0.12 fb (0.05%)
$ \mathcal{M}_{(1,\mathrm{bos})} ^2$	0.65 fb (0.3%)