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Introduction
▶ ee→HZ: dominant Higgs production

process at e+e- colliders below 500 GeV

▶ Expected precision:

▶ Need higher-order corrections:

EW NNLO expected O(1%)

ILC 1.2% [1903.01629]

CEPC 0.5% [1811.10545]

FCC-ee 0.4% [EPJ ST 228, 261]



  

Introduction
▶ Higher-order calculations in electroweak SM are challenging

(many mass scales: mZ, mW, mH, mt)

▶ Analytic calculations:

● IBP reduction to master integrals: large expressions and computing resources 

● Complete function space of master integrals unknown
(harmonic polylogs, iterated elliptic integrals, …)

▶ Numerical calculations (e.g. in momentum or Feynman par. space)

● Multi-dim. integration space, slowly converging

▶ New approaches using series solutions of diff. eqs.

● still require IBP reduction

▶ This work: semi-numerical approach, tailored for EW 2-loop problems

[Liu, Ma, Wang, 1711.09572] [Moriello, 1907.13234] 
[Hidding, 2006.05510] [Liu, Ma, 2201.11669]



  

Computational approach
▶ Basic idea: use dispersion relation for sub-loop

 
           =

[Bauberger, Berends, Bohm, Buza, hep-ph/9409388]



  

Computational approach
▶ Basic idea: use dispersion relation for sub-loop

▶ including numerator terms:
 

[           ]
T
 

(coefficients depend on masses, external momenta and σ)



  

Computational approach: box diagrams
▶ Introduce Feynman parameters

▶ q2 loop

Derivatives of ΔB0 can be easily computed

▶ Similarly use Feynman pars. for other box 
and vertex diagrams



  

Computational approach: box diagrams
▶ Introduce Feynman parameters

▶ q2 loop

▶ Problem:         can in general become negative!



  

Computational approach: box diagrams



  

UV divergences
▶ UV divergences will cause the num. integral to diverge

▶ Need to subtract terms so make integral finite

▶ Subtraction terms simple enough to integrate analytically and add back



  

UV divergences
▶ Separate treatment for global divergence and two sub-loop divergences



  

UV divergences: Example

▶ Global divergence:
Subtract integral with
zero external momenta

▶ 2-loop vacuum integrals
known analytically
(here using FIRE and TVID)

[A. Smirnov, 2020]

[Bauberger and Freitas, 2017]



  

UV divergences: Example

▶ Sub-loop divergence:
Subtract sub-loop in
large q1 limit

▶ factorizes into product of 
1-loop functions



  

UV divergences: Example

▶ Sub-loop divergence:
Subtract sub-loop in
large q2 limit

▶ factorizes into product of 
1-loop functions



  

Implementation
▶ Diagram generation with FeynArts      [Hahn, 2001]

▶ Algebraic manipulations in Mathematica:

● Construction of integrand (Feynman parameters & dispersion relation)
for each diagram type

● No IBP reduction

● UV subtraction terms

● Generate C++ code for subtracted integrand

▶ Numerical integration in C++

● Passarino-Veltman functions (D0, D1, etc.) from LoopTools
 [Hahn, Perez-Victoria, 1999]

● Adaptive Gauss integration 
(>3 digit accuracy in minutes in single core for one diagram type)



  

Numerical results

▶ Computed full EW NNLO corrections with closed fermion loops
(finite and gauge-invariant subset, typically dominant)

▶ Universal ISR QED effects factorized

▶ Final-state Z-boson defined 
as leading-pole term,
final-state Higgs in 
narrow-width approx.



  

Numerical results
▶ Use complex pole mass scheme [e.g. Freitas, Hollik, Walter, Weiglein, hep-ph/0202131]



  

Numerical results

▶ Scheme dependence:
[EWxQCD and input pars from Sun, Feng, Jia, Sang, 1609.03995]

α(0) scheme:

Gμ scheme:

▶ Corrections smaller in Gμ scheme 

▶ Very good agreement between two schemes

[Δr from Freitas, Hollik, Walter, 
Weiglein, hep-ph/0202131]



  

Conclusions
▶ EW NNLO corrections important for many scattering processes

(ee→HZ, ee→WW, pp→l+l–, ...)

▶ Semi-numerical technique based on dispersion relations and Feynman 
parameters

● Minor resources needed for numerical evaluation

● Avoids reduction to master integrals

▶ Fermionic EW NNLO corrections to ee→HZ found to be modest in size

● Scheme dependence much reduced

▶ Bosonic EW NNLO expected to be numerically less important, 
but still desirable



  

Backup



  

Results for polarized beams



  

Error estimate
▶ Main theory uncertainty:

missing bosonic NNLO corrections

▶ Partial estimates:

Difference btw. α(0) and Gμ schemes 0.12 fb (0.05%)

0.65 fb (0.3%)
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