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Motivation:

•Finding useful applications for near-term quantum machines is interesting in the quantum era.

•Quantum Approximate Optimization Algorithm (QAOA) has a high potential to showcase the advantages of quantum computing in the NISQ era.

•Jet clustering, which is actually a combinatorial problem, can be explored with QAOA after mapping a collision event into a graph.

Summary:

•Based on the jet clustering problem, the QAOA performance would be better with increasing depth of circuit, and worse with increasing number of 
nodes within the graph, independent of the graph's connectivity.

•The optimized parameters can be reused on similar graphs to sample directly with a performance decrease of less than 2% but conserve computing 
resources. When seeing optimized parameters as initial parameters and optimizing in a further step, the QAOA performance would be better.

•A well-modeling method and quantum algorithm are needed for jet clustering in the quantum era.

Performance analysis: 
• The dependence of QAOA performance on the value of k, 

depth, and nodes within the graph. GW is a classical algorithm 
used to solve MaxCut. 

• Jet clustering performance can be evaluated with the 
angle between the reconstructed jet and the corresponding 
quark.

Introduction:
MaxCut: 
• Graph : Set of vertices or nodes connected by weighted edges ( )

• cut : Partition of vertices into two disjoint subsets

• Goal : Letting the weighted sum of edges with two nodes located in 

two subsets as large as possible 
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QAOA for MaxCut: 
1. Define problem Hamiltonian , and 

mixer Hamiltonian 


2. Initialize the quantum circuit in the highest energy state of the 

mixer Hamiltonian , 


3.Define the unitaries,   and , 
where  and  are variational parameters of the circuit.


4. Initialize the 2P variational parameters and the final state 

output by the circuit .


5. By repeated measurements, the expectation value of the  
with respect to the  is 



6. The variational parameters are optimized by a classical 

optimizer , and the approximation 

ratio  is defined as , where  corresponds 

to the best value of 
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Mapping a collision event into a graph: 
• The particles are represented with nodes and the weight of the 

edge is calculated as the angle between two particles.

• For an event with n particles, each particle can have edges with 

other n-1 particles, but we only keep the k edges with the 
largest weight.


• A graph with nodes=10 and k = 3.

• Parameter transferability: The hard problem of the QAOA is 
variational parameters optimization. Abstract optimized 
parameters from 100 graphs, and reuse these optimized 
parameters to similar graphs to sample directly, which can 
conserve computing resources with a performance decrease of 
less than 2% compared to regular optimization procedure, as 
initial parameters to optimize in a further step, which can 
improve the QAOA performance. The further optimized 
parameters are more concentrated, which illustrates the 
parameter transferability in another aspect. The success rate is 
defined as the ratio of graphs with an approximation ratio 
larger than 0.96.
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