

TORCH : a fast timing detector for low-momentum particle identification

Rui Gao on behalf of the TORCH collaboration

The 2023 international workshop on the high energy Circular Electron-Positron Collider (CEPC), 23rd – 27th October 2023

Original TORCH R&D is supporting by ERC grant

Overview

- TORCH is a large-area time-of-flight detector, designed to enhance the particle identification performance, in a momentum range 2–15 GeV/c, for time-of-flight over 10m
- High-granularity Micro-Channel Plate Photomultiplier Tubes (MCP-PMTs) and fast electronics are developed to meet the requirement of timing resolution of 15ps per track
- It is foreseen to be installed in 2033–34 as part of Upgrade II of the LHCb experiment

TORCH concept

- Cherenkov photons are generated in a modelized 5m x 6m quartz plate
- The photons propagate to the periphery of the detector through total internal reflection
- A focusing block directs photons to Micro-Channel Plate Photomultiplier Tubes (MCP-PMTs)
- It requires a timing resolution of 15ps per track, translated to 70ps for individual Cherenkov photons, 30 photons per track
- It requires an angular resolution 1mrad
 It requires an angular resolution 1mrad
 translated to spatial segmentation of 128 X 8 pixels in a 53mm X 53mm active area

TORCH Quartz module

Focusing block

Optical components

- A full width (66cm), half-height (125cm) fused silica plate has been manufactured by Nikon Glass
 - thickness variation $\leq 3 \ \mu m$
 - surface roughness ≤ 0.5 nm
- Full-size focusing block is manufactured and glued to the plate with Pactan 8030

Plate surface flatness: measured 1 μm contours

Focusing block

The TORCH MCP-PMT

- MCP-PMT chosen as fast photodetector developed by Photek, U.K.
- 2-inch square MCP allow close packed to instrument a 66cm module with minimum dead space
- 64X64 capacitive coupled pixels allow charge sharing to achieve 128 equivalent pixels on one direction
- 8 pixels are grouped on the other direction to achieve 8 columns
- ALD coating to increase life time
- MCP instrumented with high density connectors on the back

MCP lab testing

- Quantum efficiency (QE) and gain uniformity typical gain ~10⁶(160 fC)
- Intrinsic time response of MCP and electronics tested with 405 nm picosecond pulsed laser
- Spatial resolution from charge sharing (using an earlier prototype tube)

Readout electronics

- Readout based on NINO and HPTDC chips
 - NINO Amplifier and discriminator 10.1109/TNS.2010.2100409
 - HPTDC Time to digit convertor 10.1109/NSSMIC.2000.949889
 - Instrument a MCP with 4 X 128 channel NINO boards and 8 HPTDC boards
- The measurement
 - Triggered measurement
 - Time of arrival
 - Time-over-Threshold (TOT)
 - 100 ps bin time
 - Extended timestamp for up to 8 hours
 - Intrinsic time resolution is 26.8ps *JINST(2014) 9 C02025*
- Custom Gigabit Ethernet Readout board
 - Raw MAC protocol for maximum efficiency
 - Use commercial router with 10 Gigabit uplink to minimum links in DAQ
- Latest DAQ based on EUDAQ framework

Data processing

- The following techniques are applied to improve time resolution
 - Time walk correction
 - Clustering position and time information for neighboring pixels
 - Integral Non-Linearity calibration for HPTDC
 - Charge to width calibration

Module prototype

- The large scale TORCH prototype was constructed and initially tested in beam with two MCP-PMT tubes in 2018
- Last year the instrumentation was extended to 6 MCP-PMTs with a total of 3072 channels, and returned to the (renovated) T9 test beam area at the CERN PS

Test beam 2022

- Previous test beam in 2018 with two MCPs
- Picture shows the test beam setup with 6 MCPs, in PS, CERN November 2022
- Mixed p/π beam at energy 3– 10 GeV
- Equipments include beam Cherenkov counters, two timing stations, AIDA TLU, 10Gigabit router, DAQ and control computers

CO₂ Cherenkov

counters

10/24/2023

Test beam result 2018: hit map, time projection

Simulation of TORCH pattern across the whole 660mm width. Red line indicates the region covered by MCPs A and B.

TORCH, The 2023 international workshop on the high energy Circular Electron-Positron Collider

Test beam result 2018: time resolution

- For beam position close to MCP-PMT, 70ps time resolution is reached
- Further studies time resolution propagation time-cluster size
- Time resolution expression

 $\sigma_{\text{TORCH}}^2 = \sigma_{\text{const}}^2 + \sigma_{\text{prop}}(t_P)^2 + \sigma_{\text{RO}}(N_{\text{Hits}})^2,$

Contribution	Fitted va	Target values (ns)	
	Pion	Proton	rarget values (ps)
$\sigma_{\rm prop}(t_p)$	$(8.3 \pm 0.7) \times 10^{-3} \times t_p$	$(7.6 \pm 0.5) \times 10^{-3} \times t_p$	$(3.75 \pm 0.8) \times 10^{-3} \times t_p$
$\sigma_{ m MCP}$	34.5 ± 8.6	31.0 ± 7.6	33
$\sigma_{ m RO}(N_{ m Hits})$	$(96.2\pm6.7)/\sqrt{N_{\rm Hits}}$	$(95.0\pm6.0)/\sqrt{N_{\rm Hits}}$	$60/\sqrt{N_{ m Hits}}$

• Further calibrations in Readout Electronics are expected to improve timing resolution

NIMA1050(2023)168181

Time resolution – propagation Time – Cluster size

Test beam: photon counting

- Counting efficiency of incoming light is critical
- Compare with Geant4 simulation to benchmark **Position 1**

 1.454 ± 0.024

 1.127 ± 0.022

Expected to improve further with calibration

 0.937 ± 0.004

 0.677 ± 0.002

with calibration									
		0	2	4	0	$N_{\rm pl}$	ho		
Mean $N_{\rm photons}$		Mean(Data)/Mean(Simulation)							
Data	Simulation	All	Exclu	ding N	$^{\rm photons}$	=0			
2.605 ± 0.007	3.586 ± 0.020	0.726 ± 0.004	0.	$843 \pm$	0.005				
1.419 ± 0.005	2.016 ± 0.029	0.704 ± 0.010	0.	$824 \pm$	0.010				

 0.644 ± 0.011

 0.600 ± 0.012

NIMA1050(2023)168181

Position

3

5

 0.823 ± 0.008

 0.820 ± 0.009

衫 simulatior

Test beam 2022: first results

- Data taken for six beam positions over radiator plate at 3, 5, 8 and 10 GeV/c beam momenta
- Detailed analysis in progress, first indications that time resolution has been maintained with the larger system (or even slightly improved)
- Further improvement expected with better calibration and event-by-event tracking

Striking patterns seen! Issues with configuring all of the electronics \rightarrow some gaps in coverage

Δt [ns] w.r.t. T2 time reference

Future development: mechanical support in LHCb

- Conceptual design is in progress for a light-weight carbon-fibre housing and support for TORCH modules
- The design aims to minimize material in the detector acceptance to keep total material budget as low as possible
- Robust exoskeleton will be used for quartz handling and jigging, and removed once module is in place
- Separate support of the (heavy) readout electronics enclosure under study
- Finite-element analysis and prototyping underway

Future development: MCP

- New modular design with variable granularity MCPs to cope with non-uniformity in track distribution in LHCb
- New 96 X 16 DC coupled MCP is being developed by Photek U.K. (to reduce channel occupancy)

The physical envelope and the connector array on the back of the new 96X16 channel MCP

Future development: readout electronics

- Currently developing FastIC and PicoTDC based readout electronics with IpGBT optical links JINST17(2022) C05027 JINST18(2023) P07012 IpGBT Manual (2019)
- Synergy with LHCb RICH Upgrade use RICH electronics for MCP testing

10/24/2023

Expected performance in LHCb

- Events fully simulated with Geant4 are merged to study expected particle ID performance of TORCH in LHCb as a function of luminosity
- Assumes that start-time information with 30 ps precision will be available from upgraded VELO

If not, start-time can be reconstructed by TORCH using the other tracks from the primary vertex (predominantly pions) by running the usual reconstruction in reverse

- Good performance seen at Upgrade II luminosity (shown for two different cuts on the likelihood)
- Performance is strongly dependent on the detector occupancy—modules closer to the beam line have poorer performance

Conclusion

- TORCH is a cutting-edge detector providing Particle Identification (PID) in the energy range of 2-15 GeV, covering an area of over 30 square meters
- TORCH has developed customised Micro-Channel Plates (MCPs) and electronics, ensuring synergy with other LHCb groups, like RICH, to maintain commonality in electronic modules and Data Acquisition (DAQ) systems
- We have conducted beam tests with a large prototype featuring over 3000 channels, and we are currently in the process of analysing the results
- Future works:
 - Plans to use FastRICH a Constant Fraction Discriminator (CFD) + 25ps TDC chip, being developed by CERN-ESE and University of Barcelona, expected in 2025
 - Characterising the new MCP with new readout electronics
 - Test beam campaign with new full size quartz module and new mechanical support

Thank you!