

1

CEPC Time of flight detector R&D based on Low Gain Avalanche Diodes technology

Tianyuan Zhang, Mengzhao Li, Wei Yi, Mei Zhao, Zhijun Liang, On behalf of IHEP HGTD group

Institute of High Energy physics, CAS

2023/10/27 Nanjing

LGAD development for CEPC time of flight detector: Motivation

- CEPC will produce 10¹² Z boson at Z pole: Rich flavor physics program
- Particle separation problems of Gas detector (dE/dx) for CEPC flavor physics:

0.5-2 GeV for K/pi separation, >1.5 GeV for K/p separation

• CEPC International Advisory Committee: one of the key recommendations

Precision timing detector should be determined as a matter of urgency (4D track)

• Timing detector is complementary to gas detector: improves the separation ability

0-4 GeV for K/pi separation, 0-8 GeV for K/p separation

Other LGAD-based TOF detector proposal

- Electron-Ion Collider (EIC) :
 - Outer layer of Tracker and TOF detector
 - Central detector(ETTL, CTTL, FTTL), Far-Forward detector AC-LGAD
- REDTOP: LGAD tracker
 - 4D tracking reconstruction for multihadron rejection

EIC: AC LGAD-based Outer layer of Tracker and TOF detector

Barrel AC-LGAD detector

Hadron endcap AC-LGAD detector

REDTOP: LGAD tracker

CEPC timing detector: Concept

- CEPC time of flight detector based on LGAD (EIC proposed LGAD-based TOF detector)
 - Area of detector (Barrel: 50 m², Endcap 20 m²), ~ 106 channels
 - Strip-like sensor (each strip: 4cm \times 0.1 cm)
 - Should be part of SET (silicon wrapper layer outside TPC or drift chamber)
 - Serve as Timing detector and part of the tracker
 - Timing resolution: **30-50 ps**
 - Spatial resolution: ~ 10 μm

Baseline detector concept in CDR

ATLAS HGTD VS. CEPC TOF detector

> ATLAS HGTD technology may need to adjust a bit to be used in CEPC

- > Need to develop large-area pad/strip LGAD sensor for CEPC application
- Reduce the dead area between channels (AC-LGAD development)

	ATLAS HGTD	CEPC TOF
Area (m ²)	6.4	~ 70
Granularity	<mark>mm²</mark> (1.3 mm ×1.3mm)	<mark>∼ cm²</mark> (4cm × 0.05cm)
Channel number	~ 3.6 × 10 ⁶	~ 3.5 ×10 ⁶
Module assembly	Bump bonding	Wire bonding at strip
MIP Time resolution	30-50 ps	30-50 ps
Spatial resolution	~ 300 µm	~ 10 µm
Dead area between	~50µm	no dead area

The Large-pad LGAD

- Time resolution test of large aera LGAD: ~55 ps
 - Area for one channel : 6.5 mm x 6.5 mm
 - 5 x 5 LGAD connected by wire bonding
 - To mimic the large aera LGAD
 - This result is before any sensor optimization for CEPC

5*5 Large area LGAD sensor Connected by wire bonding

The AC-LGAD introduction

AC-LGAD: two layout schemes for AC-pads (No dead area between channels)

- Metal AC-pads separated from the n+ layer by a thin dielectric (SiO_{2} , Si_3N_4)
- No dead zone (100% fill factor)
- Position resolution: 5~10 um
- Time resolution ~ 30ps
- Radiation hardness: same as LGAD

Pixels AC-LGAD:

- Position information: 1 layer (x,y)
- Bump bonding

Strips AC-LGAD:

- Position information: 2 layers for (x,y)
- Lower readout electronics density, no bump bonding

IHEP AC-LGAD R & D

Strips AC-LGAD:

- Strip length 5.6mm, width 100um
- Different Pitch size:
 - 150um、200um、250um

Pixels AC-LGAD:

- Pitch size 2000um, pad size 1000um
- Different N+ dose :

10P, 5P, 1P, 0.5P, 0.2P

Spatial resolution of AC-LGAD

- Laser test result of strip AC-LGAD sensor
 - It can reach about $^{\sim}8\mu m$ resolution with 150um pitch strip detector
 - While timing resolution of AC-LGAD is still can reach 30-50ps
- **> Aim for ~10μm spatial resolution (1D) with 4cm × 0.05cm** strip size (500 μm pitch)
 - It is possible to achieve that with AC-LGAD strip detector
 - While keeping 30-50 ps timing resolution

Radiation SiPM application

CEPC calorimeter, Space station scientific experiment (Herd ...)

- Scintillator+SiPM: compact structure, large dynamic range, and good energy linearity
- Urgent need to solve problem 1: Currently, SiPM has average radiation resistance, which poses a challenge for long-term use in strong radiation environments such as space or colliders.
- Urgent need to solve problem 2: High dark count limits the detection sensitivity of low background experiments. **CEPC PFA calorimeter prototype**

	Long term Satellite or Space station application	CEPC requirement
TID does	100 krad	>100 krad
Fluence	~10 ¹⁰ n _{eq} /cm ²	>10 ¹³ n _{eq} /cm ²

* 🔲 yı

SiPM dark count after irradiation

Leakage current of LGAD before irradiation

- Bulk damage after irradiation \rightarrow dark count increased
- Potential Solution:

10⁻⁵ Crucent [A] Leakage Crucent [A] Lo⁻⁶ 10⁻⁷

10⁻⁹

10⁻¹⁰

10-11

10-12

0

20

40

60

80

100 120 140

Design a special wafer to isolate the dark current from bulk damage

Leakage current of LGAD after irradiation

160

Bias Voltage [V]

200

180

10-10

20

40

Bias Voltage [V]

60

80

11

100

The status of SiPM developed by IHEP

- The structural design and some processes of SiPM have been validated.
- Energy resolution needs to be optimized.

12

100um、 50um、 20um、 10um

13

SiPM Test Plan

• Irradiation test plan:

Plan to collaborate with the Dongguan spallation team to conduct proton irradiation of SiPM

• Performance test plan:

Existing single photon testing platforms and low-temperature testing platforms

Current low light testing based on LGAD sensors Fiber Coupling Single photon testing platform (based on picosecond lasers)

Time line for radiation hard SiPM

- 2023 1st half: SiPM irradiation hard design validated in LGAD engineering run
- 2023 2nd half: 1st Dedicated SiPM engineering run submission
- 2024: 1~2 more dedicated SiPM engineering run
- 2025: built modules or working device based on radiation hard SiPM

Summary

CEPC

- AC-LGAD is a new 4D detector (position + time)
- IHEP has designed pixels and strips AC-LGAD sensors
- The best spatial resolution of strips AC-LGAD ~8μm (pitch 150um)
- Aim for AC-LGAD sensor: pitch size 4cm × 0.05cm, 30 ps, 10 μm
- Development for radiation hard SiPM
 - Aim for CEPC and Astrophysics application
- Key technology has been validated in ATLAS HGTD detector project
 - Radiation hard LGAD sensor developed by IHEP team
- Radiation SiPM R & D project
 - Formal tape-out plan will be submitted in this month
 - Dedicated engineering run by the end of this year

Thanks for Your Attention

tyzhang@ihep.ac.cn