Drift Chamber with Cluster Counting for CEPC

Guang Zhao for DC PID Group

zhaog@ihep.ac.cn

Oct. 27th, 2023

2023 International Workshop on CEPC, Nanjing

中國科學院為能物路納完備 Institute of High Energy Physics Chinese Academy of Sciences

Outline

Introduction

Reconstruction algorithm with deep learning

- Supervised model for simulated data
- Semi-supervised domain adaption model for test beam data
- Physics study with Delphes
- Prototype experiment

Summary

Physics programs at CEPC

- The CEPC aims to start operation in 2030's, as a Higgs (Z) factory in China. The plan is to operate
 - Above **ZH** threshold ($\sqrt{s} \sim 240 \text{ GeV}$) for 7 years.
 - Around and at the Z pole for 2 years.
 - Around and above W⁺W⁻ threshold for 1 year.
 - It is upgradeable to run at the *t* threshold.
- □ Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. /IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. /yr (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ^{_1} , 2 IPs)	Total no. of events
Н*	240	10	50	8.3	2.2	21.6	$4.3 imes 10^6$
			30	5	1.3	13	$2.6 imes 10^6$
Z	04	-	50	192**	50	100	$4.1 imes 10^{12}$
g	91	2	30	115**	30	60	2.5×10^{12}
W	1.00		50	26.7	6.9	6.9	$2.1 imes 10^8$
	160	1	30	16	4.2	4.2	$1.3 imes 10^8$
tī	<i>ī</i> 360	60 5	50	0.8	0.2	1.0	$0.6 imes 10^6$
			30	0.5	0.13	0.65	$0.4 imes10^6$

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

- The large samples from 2 IPs: 10⁶ Higgs, 10¹² Z,
 10⁸ W bosons, provide a unique opportunity for
 - High precision Higgs, EW measurements,
 - Study of flavor physics (b, c, tau) and QCD,
 - Probe physics beyond the standard model.
 - •

Particle identification (PID)

PID is essential for flavor physics

- Suppressing combinatorics
- Distinguishing between same topology final-states
- Adding valuable additional information for flavor tagging of jets

CEPC 4th concept detector

Preliminary PID requirement: >2 σ K/ π separation for 20 GeV/c tracks

5

Energy loss measurement: dE/dx

- Main mechanism: Ionization of charged tracks
- Traditional method: Total energy loss (dE/dx)
 - Landau distribution due to secondary ionizations
 - Large fluctuation from many sources: energy loss, amplification ...

- Fit by Lehraus 1983:
 - dE/dx res. = **5.7** * L^{-0.37} (%)
- Fit in 2021:
 - dE/dx res. = **5.4** * L^{-0.37} (%)
- No significant improvement in the past 40 years

Integrated charge

Cluster counting measurement: dN/dx

Alternative method: Counting primary clusters (dN/dx)

- Poisson distribution \rightarrow Get rid of the secondary ionizations
- Small fluctuation Potentially, a factor of 2 better resolution than dE/dx

dN/dx is extremely powerful, proposed in ILC, FCC-ee, CEPC

Require fast electronics and sophisticated counting algorithm

Preliminary DC design according to previous simulation studies

Optimized DC Parameters

DC Parameters				
Radius extension	800-1800 mm			
Length of outermost wires $(\cos\theta=0.82)$	5143 mm			
Thickness of inner CF cylinder	200 µm			
Outer CF frame structure	Equivalent CF thickness: 1.63 mm			
Thickness of end Al plate	35 mm			
Cell size	18 mm × 18 mm			
# of cells	24766			
Ratio of field wires to sense wires	3:1			
Gas mixture	He/iC ₄ H ₁₀ =90:10			

K/ π separation power vs P (1m track length, cos θ =0)

8

 2σ K/ π separation for 20 GeV/c tracks could be achieved (preliminary)

Further efforts on cluster counting

Reconstruction with Deep Learning

- **1.** DL algorithm for full simulation study
- 2. DL algorithm for test beam data

Reconstruction algorithm

Simulated waveform of a DC cell. Orange lines are primary electrons. Green lines are secondary electrons.

- Task:
 - Both **primary electrons** and **secondary electrons** contribute peaks on the waveform
 - Find the number of peaks from **primary electrons**

Traditional algorithm:

- Use partial information of the raw waveform
- Require prior knowledge
- Deep learning could be more powerful because
 - make full use of the waveform information
 - automatically learn characteristics of signals and noises from large labeled samples

Supervised model for simulated samples

Peak finding with LSTM

Why LSTM?
→ Waveforms are time series

- Architecture: LSTM (RNN-based)
- Method: Binary classification of signals and noises on slide windows of peak candidates

Clusterization with DGCNN

Why DGCNN? → Locality of the electrons in the same primary cluster, perform massage passing through neighbor nodes in GNN

- Architecture: DGCNN (GNN-based)
- Method: Binary classification of primary and secondary electrons

Results for simulated samples

LSTM model is a better classifier compared to derivative-based model

Model	μ	σ
MC truth (input)	16.53	3.93
Traditional alg.	18.67	4.60
Deep learning alg.	16.65	4.06

Results from deep learning is much closer to MC truth than traditional algorithm (10 GeV/c pions) 13

Deep learning algorithm for test beam data

Since 2021, three rounds of test beam experiment @ CERN organized by INFN colleagues:

- Participate data taking and collaboratively analyze the test beam data
- Develop the deep learning algorithm for peak finding

 \rightarrow See Nikola De Filippis's talk for details of test beam

Challenge of deep learning algorithm on experimental data

Main challenges:

- Discrepancies between data and MC
- Lack of labels in experimental data

Cannot directly apply the supervised model trained by simulated samples

Semi-supervised domain adaptation

Align data/MC samples with Optimal Transport

Original work by Damodaran, et al. (arXiv: 1803.10081)

Semi-supervised implementation in our work

Numeric experiment

ROC Curve

Numeric experiment with pseudo data:

• Use labels in pseudo data to evaluate

Model	AUC	pAUC (FPR<0.1)
Ideal (supervised)	0.926	0.812
Source (baseline)	0.878	0.749
Source + OT	0.895	0.769
Source + OT + Semi (Semi-supervised DeepJDOT)	0.912	0.793

Validation: Performance of Semi-DeepJDOT model is very close to the ideal model (supervised model)

Peak finding for test beam data

Single-waveform results between derivative alg. and DL alg.

DL algorithm is more powerful to discriminate signals and noises

The trend of the results w.r.t. angle is consistent with theoretical estimation

Physics with Delphes

Fast simulation with Delphes

- Delphes: A C++ framework, performing a fast multipurpose detector response simulation
 - $10^2 \sim 10^3$ faster than the fully GEANT-based simulations
 - Sufficient and widely used for phenomenological studies
- Develop dedicated PID modules (dN/dx and TOF) and perform quick physics studies

J. High Energ. Phys. 2014, 57 (2014)

PID modules implementation

dN/dx parameterization from full simulation

- **d**N/d x_{mean} vs. $\beta\gamma$ and $cos\theta$
- dN/dx_{sigma} vs. $\beta\gamma$ and $cos\theta$
- TOF parameterization by assuming a resolution of 30 ps

K/π separation power

Study of $B^0_{(s)} \rightarrow h^+ h'^-$

Motivation

- Rich physics programs in $B^0_{(s)} \rightarrow h^+h'^-$ decays
 - Time-dependent asymmetry, direct CP violation, lifetime measurement, …
- Good test bed to study impact of PID in flavor physics
- Explore physics potential of Tera-Z

 More detailed studies ongoing

Prototype Experiment

Drift tube experiment on radioactive source

Diameter of the tube: 30 mm
Working gas: He/iC₄H₁₀=90:10

Preamplifier

- Bandwidth ~1GHz
- ADC sampling rate 1GHz

Preliminary full simulation study shows $2\sigma K/\pi$ separation can be achieved at 20 GeV/c for CEPC DC with 1m thickness

Recent efforts on cluster counting feasibility

- Deep learning algorithms: models for both simulated and experimental samples, outperform traditional algorithms
- Delphes fast simulation: PID performance consistent to full simulation, improved signal sensitivity with PID in physics channels
- Prototype experiment: improved setup and new preamplifier, show potential for cluster counting

Future works

- Optimize deep learning algorithm, prepare papers
- Test beam data analysis
- More prototype experiments

Backup

PID by ionization

Main mechanism: Ionization of matter by charged particles

- Number of clusters per unit length is Poisson-distributed
- Primary electrons sometimes get large energies
 - Can make secondary ionization
 - Can even create visible secondary track ("delta-electron")

Waveform simulation

Data size estimation

Drift Chamber

• A Drift Chamber optimized for PID

> better than $2\sigma K/\pi$ separation for P < 20GeV/c

Signal measurement

> dN/dx for cluster counting method

Signal characteristics

Parameters	Value	Parameters	Value
Rising	0.5~1ns	Falling	~tens ns
Pulse width	Hundreds ns	Pulse spacing (overlapping)	few~dozen ns
Amplitude	Dozen∼hund red nA	Pulse charge	Ten∼dozen fC

Detector channels and data rate

		Higgs	Z
Trigger-less		256 Gbps	6.4 Tbps
Trigger	Trigger rate	1 kHz	100 kHz
	Max #wires/event	25k	10k
	bandwidth	20 Gbps	800 Gbps

50 peaks/wire*, 16bit/peak from F.Grancagnolo

Momentum resolution

Optimal transport (OT)

Optimal transport [Monge 1781, Kantorovich 1942]

Given $x \sim P_s$, $y \sim P_t$ and a cost function $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$. Find a **probablistic** coupling $\gamma \in \Pi(\mathcal{X}_s \times \mathcal{X}_t)$

$$\gamma = \underset{\gamma}{\operatorname{argmin}} \int_{\mathcal{X}_{s} \times \mathcal{X}_{t}} c(x, y) \gamma(x, y) dx dy = \underset{\gamma}{\operatorname{argmin}} \mathbb{E}_{x, y \sim \gamma} [c(x, y)]$$
$$s.t.\gamma \in \Pi = \left\{ \gamma \ge 0, \int_{\mathcal{X}_{s}} \gamma(x, y) dy = P_{t}, \int_{\mathcal{X}_{t}} \gamma(x, y) dx = P_{s} \right\}$$

Kantorovich (Nobel Prize 1975)

Kantorovich, L. (1942). On the translocation of masses. Acad. Sci. URSS (N.S.), 37:199-201.

Pseudo data samples

Samples

Source domain: ~2ns risetime, ~10% noise

Target domain: ~4ns risetime, ~20% noise

Mechanical study: support structures

- Carbon fiber frame structure, including 8 longitudinal hollow beams and 8 annular hollow beams
- Thickness of inner CF cylinder: 200 μm/layer
- Effective outer CF frame structure: 1.63 mm
- Thickness of end Al plate: 35 mm

Mechanical study: stability

Finite element model——wire tension + weight loads (supported by eight blocks at each endplate)

Mises stress: 70MPa Principal stress : 33MPa Deformation: 0.8mm Buckling coefficient: 17.2, it is safe

The support structure is stable, and the deformation is acceptable

