Reconstruction Algorithm of Cluster Counting in Drift Chambers
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Introduction

* Drift Chamber in CEPC 4" conceptual detector » Advantages of Particle identification

* Tracker with silicon tracker
and a drift chamber

Pre ry DC parameters

* Reduce combination background
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Algorithm for Simulated Samples

* Reconstruction of cluster counting * Reconstruction algorithms; ¢ Preliminary results with classical algorithm
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K /m separation power is better than 2 sigma at 20GeV/c in dN/dx full simulation
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* Comparison between Classical & Deep learning algorithms

Peak finding Clusterization [

Peak finding with LSTM Clusterization with DGCNN
(Long Short Term Memory) (Dynamic Graphic Convolutional Neural Network)
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noises on slide windows of peak

candidates secondary electrons |

Algorithm of Test Beam Samples

* Deep learning algorithm in beam test data analysis
* Beam Test for DC prototype « Difficulties for ML in data samples

* Preliminary results of peak finding

* Comparison between classical and ML peak finding algorithms
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Deep learning has better performance on finding peaks reasonably on data.
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* We develop the semi-supervised version of DeepJDOT
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The result of deep learning algorithm has consistent tendency with theoretical expectation.
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