Introduction to Belle II TRG system

Yun-Tsung Lai

on behalf of the Belle II TRG group

KEK IPNS

ytlai@post.kek.jp

The 2023 International Workshop on the High Energy Circular Electron Positron Collider

26th Oct., 2023

- Introduction: SuperKEKB, Belle II, Trigger and DAQ
- Belle II Level-1 Trigger (TRG) system:
 - Electronics device
 - Sub-triggers: CDC, ECL, TOP, KLM
 - Global triggers: Global Reconstruction Logic (GRL) and Global Decision Logic (GDL)
 - Upgrade plans

• Summary

SuperKEKB

- SuperKEKB: Upgraded from KEKB.
 - More than 30 times larger luminosity of KEKB with nano beam scheme.
- Asymmetric energy collider:
 - 7.0 GeV e^{-} and 4.0 GeV e^{+} for Y(4S) $\rightarrow B\overline{B}$.

- Luminosity achievement:
 - L_{peak} = 4.65 x 10³⁴ cm⁻²s⁻¹.
 World record. ~Two times of KEKB record with much smaller beam current.
 - $L_{int} = \sim 427 \text{ fb}^{-1} \text{ up to Jun. 2022.}$
- Will resume beam collision in 2024 with PXD full installation.

Belle II detector

• Belle II: Newly-designed sub-detectors set to improve detection performance.

- Physics target of Belle II:
 - Rare B, τ, charm physics, Dark Matter search, CP Violation.
- Requirement for data taking:
 - High L1 trigger rate (~30 kHz), high background, and large event size.

Belle II DAQ system

- Common readout system for each sub-detector (except for PXD)
- Timing and trigger distribution (TTD) for trigger signal from L1 TRG.
- Pipeline readout
- Target: 30 kHz trigger rate and raw event size of 1 MB.

Belle II TRG system

- Provide L1 trigger signal to DAQ using FPGA chips for real-time processing on detector raw data.
- Why L1?
 - Buffer storage are not enough for all data due to high event rate and short bunch spacing in collider experiment.
- 4 sub-trigger systems + 2 global trigger systems.

Conditions and requirements for TRG

- Requirements:
 - Overall latency < 4.4 µs.
 - ~100% eff. for hadronic events.
 - Max 30 kHz @ 8*10³⁵ cm⁻²s⁻¹
 - Timing precision: < 10 ns
 - Event separation: 500 ns
- Physics processes in interest:

- Examples of technical challenges so far:
 - Low-multiplicity trigger mainly based on ECL, but contamination from noise, beam bkg or Bhabha.
 - Energy trigger with high eff. but high rate too.
 - Injection bkg.
 - Drawback of track trigger at endcap.
 - High track trigger rate due to crosstalk noise.
 - Latency budget due to transmission or complicated logics.

Phase2 Lum. Record							
Process	C.S. (nb)	R@L=5.5x10 ³³ (Hz)	R@L=8x10 ³⁵ (Hz)	TRG logic			
Upsilon(4S)	1.2	6.6	960	CDC 3trk(fff) ECL high energy(hie) ECL 4 clusters(c4)			
Continuum	2.8	15.4	2200				
μμ	0.8	4.4	640	CDC 2trk(ffo) etc			
ττ	0.8	4.4	640				
Bhabha	44	242	350 *	ECL Bhabha(bhabha, 3D bhabha)			
γ-γ	2.4	13.2	19 *				
Two photon	13	71.5	10000	CDC 2trk(ffo) etc			
Total	67	357.5	~15000				

- Most of the major logics in Belle II TRG are implemented in these two Universal Trigger boards.
 - Different from Front-End electronics, TRG device requires FPGA with large amount of logic cells and IO bandwidth due to the complexity of the algorithm design.
- Interface:
 - QSFP optical link.
 - Lemo and RJ45 for clock input from accelerator.
 - LVDS.
 - VME 6U: Power, slow control, flash memory access.

Belle II UT3

Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B

Belle II UT4

Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

Data transmission protocol

- Data transmission in TRG: Xilinx and Altera FPGA MGT, QSFP module, and MPO cable.
- The original plan was to use the open-source Aurora protocol, but large latency was introduced and exceeded the L1 limit (4.4 μ s).
- Belle II CDCTRG developed an user-defined transmission protocols:
 - Smaller latency than Aurora's: Latency reduction is critical for L1!
 - User-friendly interface.
 - 8B/10B and 64B/66B encoding.
 - Support various Xilinx and Altera MGT.
 - Bit error rate $< 10^{-18}$ /s with few weeks BERT.
 - Flow control and synchronization.

Latency comparison using UT3 (Virtex-6 GTX and GTH)

Protocol	Lane rate	$user_clk$	Link type	Latency (ns)
Aurora $8B/10B$	$5.08 { m ~Gbps}$	$254 \mathrm{~MHz}$	GTX-GTX	$185 \sim 190$ •
Raw-level $8B/10B$	$5.08 { m ~Gbps}$	$254 \mathrm{~MHz}$	GTX-GTX	$132 \sim 136$
	$5.08 { m ~Gbps}$	$254 \mathrm{~MHz}$	GTH-GTX	$132 \sim 136$
	$5.08 { m ~Gbps}$	$254 \mathrm{~MHz}$	GTH-GTH	$91 \sim 95$
	$5.08 \mathrm{~Gbps}$	$254 \mathrm{~MHz}$	GTX-GTH	91~95
Aurora $64B/66B$	$10.16 \mathrm{~Gbps}$	$158.75 \mathrm{~MHz}$	GTH-GTH	$296 \sim 302$
Raw-level $64B/66B$	11.176 Gbps	169.33 MHz	GTH-GTH	$106 \sim 112$

For **UT4**:

- Up to 25 Gbps using 64B/66B.
- Much smaller latency than the ones in the left table (even by a factor of 2, < 100 ns).

Central Drift Chamber (CDC)

- About 14 thousand of sense wires and mixture of He and ethane as ionization gas.
- Gas atoms' ionization will accumulate charges on sense wires when charged particles go through.
- An alternative AUAVAUAVA wire configuration for 3D information:
 - A: Axial super-layer (SL) parallel to z-axis
 - **U**, **V**: Stereo SL with two small stereo angles.

CDCTRG

- Track Segment Finder (TSF): Basement of all track trigger.
 - Collection of specific shape of wires within a SL.
 - Simplify the tracking algorithm design in L1.

Track Segment

SL 0

SL 1~8

- Tracker: 2D full track, 3D, Neural 3D (NN), and short tracker in Global Reconstruction Logic (GRL).
- Event Timing Finder (ETF): also based on tracking results.

Fonrt-End

Xilinx Virtex-5

Merger

Altera Arria2

2023/10/26

Yun-Tsung Lai (KEK IPNS) @ 2023 CEPC workshop

2D full tracker

- Full track: The charged tracks which go through all of the layers of CDC and reach barrel region of ECL.
- 2D algorithm: Hough transformation.
 - Assuming a circle.
 - TS from 5 Axial SL are transferred into 5 lines in the conformal plane.
 - Find the peak, which corresponds to track parameters.
- Very high eff. Utilization:
 - 3-track: Hadronic events.
 - 2-track with back-to-back or opening angle: di-muon or tau events.

https://doi.org/10.6342/NTU201802022

E. Won, H. Moon, J.Korean Phys.Soc. 80 (2022) 2, 117-122 Yuki Sue et al 2022 J. Phys.: Conf. Ser. 2374 012103

- The original design is based on a histograming method by collecting the timing of TS.
 - However, too many fake TS due to crosstalk noise from CDC.
- New method: Use the 2D tracking result to pick up the TS associated with tracks, and find the fastest timing among wires.
 - Resolution: 20 ns \rightarrow 10 ns.
 - Became usable for L1 timing.
 - Eff. for hadronic events: $87.2\% \rightarrow 94.2\%$.

3D tracker

- Purpose: find the longitudinal displacement of a track (z_0) to separate the off-IP track, e.g. beam background.
- Based on the 2D track, and perform fitting on the 4 stereo • SL TS.

Entries

Mean

Std Dev

Underflow

Overflow

Constant1

Mean

Sigma1

Sigma2

10 20 30

0

Constant2

9480

585

57

ztostraw

 151.8 ± 9.0

-2.453 ± 0.122

 5.987 ± 0.294

135.4 ± 8.3

13.56 ± 0.25

-2.796 ± 0.1296 12.18 ± 0.09162

Presently, the resolution is not good enough for L1 • utilization. resZ0

KOREA

- New method under development with new electronics:
 - To improve the robustness ٠ against noise hits.

300

250

200

150

100

50

Belle II

2019

-30 -20 -10

φ ϕ_{axial}

S. Neuhaus et al 2015 J. Phys.: Conf. Ser. 608 012052 Kai Lukas Unger et al 2023 J. Phys.: Conf. Ser. 2438 012056 F. Meggendorfer, DPG Conference 2021 Thesis: S. Skambraks, S. Pohl

- In addition to the conventional 3D tracker based on fitting method, Belle II has a Neural Network 3D tracker (NN) running in parallel in the system.
- Input the 2D tracker and stereo TS info
 - Crossing angle, drift time, ϕ relative to 2D Track .
 - Obtain z_0 and θ .

Neural z trigger (cont'd)

S. Neuhaus et al 2015 J. Phys.: Conf. Ser. 608 012052 Kai Lukas Unger et al 2023 J. Phys.: Conf. Ser. 2438 012056 F. Meggendorfer, DPG Conference 2021 Thesis: S. Skambraks, S. Pohl

- z₀ resolution is very good.
 - Will be more improved with updated network along with new data.
- The ambitious single-track-trigger with z₀ and pt requirement to reduce bias.
 - Thanks to the good performance of Neural trigger, its L1 trigger rate is acceptable.

Short tracker in GRL

- The logic is implemented in part of the global trigger (GRL).
 - Use the TS of inner 5 SL (3 axial, 2 stereo).
 - Pattern recolonization over a 64 x 5 array. Simple design.
 - Consider the resource of FPGA device.
- Improve the angular acceptance of CDCTRG toward endcap.
- Also the curling-back tracks within the chamber: low-pt.

- Belle II ECL:
 - 8736 CsI(Tl) crystals

- lacted Ender The first of Ender The first of
- ECLTRG data flow: ٠ Csl(Tl)+PD+PreAmp ►DAQ TMM (7) FAM (52) E FADC count 40아 Expected signal ShaperDS ...[16]... (8736) ...[8]... ...[12]... ---[<u>-</u>]--(576) ETM Example fit → GRL 300 200 → GDL 100 0 2.5 0.5 1.5 2 T(µs) **ETM**: Energy&Timing FAM: FADC analysis module. TMM: Merger. ShaperDSP: Fast-shaping Measurement using Xilinx Kintex-7 FPGA. Xilinx Kintex-7 FPGA. signals from neighboring universal trigger board. 4x4 crystals are merged Receive TC info and perform fitting. as a Trigger Cell (RC).

ECLTRG ETM

- Triggers from ETM:
 - Energy sum > 1 GeV.
 - Clustering.
 - Low-multiplicity trigger and Bhabha: Clusters region, opening angle, and enerygy requirements.
 - Event timing: Major timing source in L1 TRG.
- Performance:
 - The energy sum trigger has the best performance for most of physics. e.g. hadronic (~100%), tau, etc.
 - Since track trigger from CDC cannot handle endcap, low-multiplicity highly relies on ECL trigger.
 - But the trigger rate is easy to go too high as ECL is easy to be affected by background.
 - CDC-ECL matching in GRL is under validation.

ICN logic S. Lee et al., IEEE TNS, vol. 67, no. 9, pp. 2143-2147, Sept. 2020 S.-H. Kim et al 2017 J. Phys.: Conf. Ser. 928 012022

0 3

7 4 8

TOPTRG

- TOP: Utilizing Internally Reflected Cherenkov Light within the quartz bar (iTOP module) for PID in barrel.
- Also for L1 event timing measurement based on realtime likelihood analysis on the waveform.
- Timing resolution of hadronic event:
 - Eff. is only ~34% due to overwhelming number of beam-related background photons.
 - Utilization of CDC-TOP matching is under study.

KLMTRG

- KLM: Scintillator strips and Resistive Plate Counters (RPC) in different regions.
- Present logic design:
 - Coincidence of hits in multiple layers.
 - back-to-back.
 - High eff., and the overall trigger rate is not very high. Cosmic occupies a certain fraction.
 - CDC-KLM matching in GRL.
- New logic under development:
 - Straight line chi² fitter.
 - Expect to be able to separate cosmic event.

- Global Reconstruction Logic (GRL):
 - Master of the entire CDCTRG system: GRL receives the track output from each separated pieces, and provides summary:
 - Short tracking, track counting, back-to-back, opening angles, etc.
 - GRL also receives the output from other sub-triggers in form of physics objects: ECL cluster, KLM hit, TOP hit, and it performs matching between CDC track and those other sub-triggers.

Global Reconstruction Logic: trigger list

- GRL has strong flexibility of trigger combinations:
 - Track counting from 2D and 3D: single-track, 2-track, 3-track.
 - Short tracking.
 - back-to-back, opening angle > 90°.
 Between full to full, full to short, and short to short.
 - Matching between 2D full tracks and others: Using track parameter to calculate $\Delta \phi$ with LUT.
 - CDC-ECL
 - CDC-TOP
 - CDC-KLM
 - ECL-KLM
 - Track-cluster back-to-back.
 - Tau trigger with machine learning.
- Many of them were not in the original plan of Belle II TRG design.

Global Reconstruction Logic: ML tau trigger

- GRL receives the cluster information from ECLTRG.
 - Input the position and energy information of clusters to a Neural Network, and determine if it is a tau event or not.
 - A kind of topological application.
 - Based on hls4ml.
 - Validated and will be implemented in 2024 runs.

- Global Decision Logic (GDL): ٠
 - GDL receives the summarized sub-trigger info in forms of "trigger bit".
 - Latency adjustment on the input trigger bits.
 - Trigger decision: Or or AND gate to combine input bits into final L1 trigger menu, and the final decision will be sent to DAQ system.
 - Pre-scale on trigger bits. ٠

CDC Summary

18 hits ECL Summary

27 bits

9 bits KLM Summary

3 bits

1200 bits max

TOP Summary

Yun-Tsung Lai (KEK IPNS) @ 2023 CEPC workshop

2014/05/2 GDL Schematic Version 0.00 Y. laws

Trigger menu for Belle II physics

Hadronic event: BB-bar and qq-bar (q=u,d,s,c)

- High multiplicity. ~100% eff.
- While keeping high eff., need to reduce systematics.
 - 3-track
 - 2-track + opening angle > 90°
 - ECL energy sum > 1 GeV
 - 4 ECL clusters

• τ event

- 1 or 3 charged tracks.
 - 2-track (full or short) + opening angle > 90°
 - ECL energy sum > 1 GeV
 - 3 ECL clusters, 1 of E > 300 MeV
 - CDC-KLM matching

Dark sector, Low-multiplicity

- 1 or 3 charged tracks.
 - 2-track + opening angle > 30°: Z'
 - CDC-KLM matching: Z'
 - 1 ECL cluster, energy sum > 1 GeV: single photon, axion, ALP
 - 1 ECL cluster, energy sum > 0.5 GeV, barrel: high mass dark photon
 - ECL cluster back to back, energy sum < 2GeV: two-photon fusion, ALP
 - 1 ECL cluster, energy sum > 2 GeV, endcap: π^{0} form factor, ISR

Future trigger board UT5 with Xilinx Versal

- Xilinx Versal ACAP: Candidate of FPGA selection for the next generation of trigger device.
 - FPGA together with other external tools integrated into a SoC.
- For Versal, what are we interested in?
 - Stronger FPGA.
 - Al engine for machine learning inference.
 - Higher transmission bandwidth with PAM4.
 - Suitable for the L1 TRG's purpose.
- Now, Belle II, Energy Frontier, and E-sys group in • KEK IPNS are collaborating for new Trigger board's R&D based on Versal devices.

NRZ (Non-Return-to-Zero)

Cascade Interface

Flexible Interconnect Stream Interface

PAM4 (Pulse Amplitude Modulation)

Four distinct voltage levels. Two bits per clock cycle.

source: Xilinx website

2023/10/26

SVDTRG

- A brand new idea to include the inner Silicon Vertex Detector (SVD) in the L1 TRG system.
 - Enhance the power of off-IP track rejection.
- Firmware design:
 - Obtain the hit pattern among all cells.
 - Match with pre-defined patterns stored in table.

T. Shimasaki, "Msater thesis, The University of Tokyo, 2023

Yun-Tsung Lai (KEK IPNS) @ 2023 CEPC workshop

More new ideas are ongoing

S. Skambraks. Thesis

Aglining methode ploted on the CDC cross-section

Displaced tracking with CNN:

Proposed aglining methode with a agning width of 5 within each segment

ECL clustering with GNN:

Tracking with GNN:

Dataset: displaced processed simulated 2 tracks 0 nominal-phase3

- Belle II TRG system performs real-time event selection based on the 4 detectors' input and FPGA chips.
 - CDC, ECL, TOP, KLM, and global trigger systems.

• TRG logics includes tracking, calorimeter, muon, event timing, and matching between sub-triggers.

 For the future upgrade with increasing luminosity, new algorithms require stronger robustness again noise and background to reduce the overall L1 trigger rate, and the R&D of new FPGA device is ongoing.