

Check-Sort-Push: a readout, suppression and transmission on a shared link between frontend and backend electronics

Zhen-An Liu

CEPC2023, Nanjing China

Oct. 23-27 2023

- Motivation
- TDAQ R&D Setup
- Why do we propose a Check-Sort-Push
- Implementation and test results
- Summary

Motivation

- Questions on TDAQ design: Does CEPC needs a Hardware Trigger(L1 trigger)
- If No (trigger-less/Software trigger/HLT)
 - DAQ: time slice based FEE data readout + eventbuilding + HLT + Saving
 - Clock/Fast control for FEE
 - Slow control for FEE
- If YES
 - L1Pass based data readout in FEE (+eventbuilding + HLT + Saving)
 - Clock/Fast-Slow control via TCDS
 - L1Pass based data readout in BEE (+eventbuilding + HLT + Saving)
 - Unified shared link between FEE/BEE
 - Continuous transmission without compression(Zero suppression)
 - Continuous transmission with compression (Zero suppression)
 - Local trigger output to subsystem and global trigger
 - Clock/Fast/slow control to FEE via BEE from TCDS
- Motivation
 - Uncover the relative issues/problems

TDAQ R&D proposal in 2021

TDAQ Proposal fc TDAQ Proposal for CEPC(2)

- Baselines
 - Supports both readout
 - Trigger based and
 - Triggerless
 - Supports continuous /data driven
 - Develop unified down link to FEE
 - Fast control(clock, Synch, BXs, L1,..
 - Slow control(parameter setting, run (
 - Provide FEE high BW data way
 - 4.8-10 Gbps links
 - Provides DAQ
 - 10-100 Gbps data links

- Baselines
 - Fiber optics data links
 - Open structure to FEE
 - xTCA based architecture
 - High speed interconnection
 - High speed data throughput
 - commercial equipment based Post-DAQ (further discussion with LiFei)

Firmware R&D block diagram

• Firmware design:

uTCA based R&D System

- Complete R&D System FE/BE
 - 2 ixFP cards
 - 1 ixFP cards for slow control/processor
 - 1 ixFP cards for iRPC data source
 - 1 AMC13
 - TTC/TTS
 - Management
 - 1 MCH + 1 PC
 - Slow control
 - Management + data storage
- Functions
 - 1. Emulation/Development System
 - 2. Hardware, GBT/GBT based
 - 3. Detector Simulator/data source
 - 4. Fast/Slow control, cluster finding, dat

Emulation Study for RPC detector

- iRPC provides better position by timing measurement from both strip ends
- Frontend Electronics board (FEB) emulator
 - Hit position
 - *r* is calculated by the time difference of signals from both Ends(see next page).
 - Digitization
 - For each fired strip, there are always 2 32-bit TDC data constructed.
 - Channel-HR Rising Edge + Channel-LR Rising Edge
 - Zero-suppression
 - Sends time info from only fired strips
 - TDC Data format(32 bits)
 - devAddr : FPGA ID
 - chanAddr : channel address
 - Coarse time: combine BCN(Preserved, 12 bits) and t1, t2

2023 Fine time: responsible to the precision 2050 Stars 256 Star 10 ps

KISHIY LUU	JE					
devAddr	ahanAddr	TDC data				
	ChanAuur	Coarse time	Fine time			
2	6	16	8			

Transmit(Tx) Latency and Receive(Rx) Latency are introduced for MuX/DeMux

• 100 % efficiency is measured with a TxLW setting of 24 BX in our simulation.

Emulation Study for high occupancy case

- Emulation Study results with real BEE Board (BEB)
 - FEE sends all data(TxLW: 24)
 - BEE introduce Receive Latency Window(RxLW) •
 - The transmission window is calculated by comparing sending BX and the BX the data originates. At high ٠ occupancy cases when the data to be transmitted more than the transmission window should be rejected and sending a truncate flag to the backend.

Issues/Problems

- As hit rate increase
 - Partial DAQ Data readout increase
 - Sequential readout/Frame readout
 - All data are read out which requires additional processing and compression
 - Polling/Sparse readout/Zero suppression
 - External event sets a flag which is then checked by the readout circuitry
 - Sending Delay increase in FEE
 - DeMux window in BEE should increase avoid loosing information for trigger also

- Real test data showed more interesting for latency
 - Beam data + gamma background
 - Trigger with beam
 - Latency limited by the DeMux buffer length(64BX)
 - Gamma background have larger latency

Conclusion: Sequential sending is problematic! Sending must based on generation time

- A new protocol ("Check-Sort-Push" algorithm based on timing) is introduced to use shorter Latency Window so to ease backend electronics DeMux design such a way that
 - Check(read) for new hits every BX(25ns),
 - Sort the new hits with existing ones in sequence of production in both the local data buffer and the merge buffer
 - Push(send) the concentration frame with earliest data in the merger buffer

Check-Sort-Push implementation

Check

- Sequential readout with digitizing clock
- Data frame with generation time(in B) and channel plus data
- Sort(priority encoding) with merging clock(in shanred link)
 - First sorting by generation time befor moved to FIFO
 - Second sorting by generation time in the merger module before moved to concentrator FIFO
- Push
 - Sending long frame with concentration clock

2023/10/26

Z.-A. Liu: Check-Sort-Push in CEPC

Angle Convert

• Data De-multiplexing

• Cluster Finding

Further Study

- <u>CSP was proposed in CMS/RPC phase II upgrade</u>
 - <u>https://indico.cern.ch/event/967463/contributions/4071622/attachments/212601</u>
 <u>6/3579438/RPC_electronic_meeting_20201020.pdf</u>
- Application has been made in CMS iRPC system with success
- Beam test data analysis is under going

- Sequential data reading and sending introduce a large range of latency which leads to a partial data loss and FPGA resource demands
- Check-Sort-Push Protocol was introduced and proved effective in solving the issue with simulation data and emulation setup
- This R&D study could be a good start of CEPC TDAQ study

- Purpose
 - Studying the data transmission mechanism between the front and backend.
 - Verifying the backend functions(fast/slow control, data transmission mechanism and DAQ data format, etc.)
- System setup

Strange Data reception

												•	Droblom	. Data pr	oduced in come
	Trece	Lve	TDCdata1 TDCo	data2 TI	DCdata3	converted_each	h_data_to_	strip_and_time	(ns)			•	Problem	n. Data pro	Juuced in same
G			I.FPGA1										time in d	different c	hannel are
firstly	BX-4		464002d3 4540	002£2 46	63ff459	strip_22_HR :40	967.1	strip_21_HR :4	0967.4	strip 22 HF	R :40930.9				
	вх-3		474002c8 483f	Ef1f2 47	73ff29c	strip 23 HR :40	967.0	strip 24 HR :4	0924.9	strip 23 HF	R :40926.5		transmit	ted with u	inexpected
	вх-2		4b3ff25d 4a3f	E£245 49	93ff22e	strip_27_HR :	40925.9	strip_26_HR :	40925.7	strip_25_HR	:40925.4		delay		
	BX-1		4e3ff426 4d3f	E£361 4c	c3ff289	strip_30_HR :	40930.4	strip_29_HR :	40928.4	strip_28_HR	:40920 3		uelay.		
	BX+0		003ff73d 4e40	002b8 4d	d4002b0	strip_32_HR :	40938.1	strip_30_HR :	40966.8	strip_29_HR	:40966.7	•	For exan	nple Strip	23 HR was
	BX+1		033ff71b 023f	E£744 01	13ff74a	strip_35_HR :	40937.8	strip_34_HR :	40938.2	strip_33_HR	:40938.2				
	BX+2		034002e2 0240	0030d 01	140030e	strip_35_HR :	40967.2	strip_34_HR :	40967.6	strip_33_HR	:40967.6		transmit	ted at BX-	2 DUT LR at
	BX+3		043ff749 0140	00ed2 00	0400eae	strip_36_HR :	40938.2	strip_33_HR :	40997.1	strip_32_HR	:40996.7		RX+21		
	BX+4		0440030d 0531	tt767 4t	1311474	strip_36_HR :	40967.6	strip_37_HR :	40938.5	strip_31_HR	:40931.1				
	BX+5		07311786 0631	EE767 05	54003eb	strip_39_HR :	40938.8	strip_38_HR :	40938.5	strip_37_HR	:40969.8				
	BX+6		08311/8e 0/40		640031d	strip_40_HR :	40938.9	strip_39_HR :	40969.3	strip_38_HR	:40967.8	•	Dresset		
	BX+/		094003c0 0840	1030/05 5571-1 0-	93II/9I - 26671-4	strip_41_HR :	40969.4	strip_40_HR :	40969.3	strip_41_HR	:40039.1	•	Present	FEB senai	ng algorithm:
	DATO DV+0		042557ba 0a24	EE762 06	a311/04	strip_42_HR :	40969.4	strip_43_HR :	40939.2	strip_42_HR	.40969.6	•	Data wi	th smaller	· FPGA ID and
	DAT 5		0c2ff7b2 0d40	0256 06	a40030C	strip_45_AR :	40939.4	strip_44_nk :	40939.2	strip_45_HR	.40968.8				
	DX+10	1			BFF	+10BX window			40505.1	SULLD_44_KK	.40900.0		channel	number a	re transmitted
	BX+11	1		00346 Of	53ff8c2	etrip 47 HR .	40972 0	strip 46 HR .	40969 6	strip 47 HR	•40941 9		firstly		
	BX+12		123ffb14 113f	Ffb26 10	03ffc29	strip_17_HR :	40947.7	strip_10_IR :	40947.9	strip 47 LB	•40950.4		mstry.		
	BX+13		143ffafa 133f	Ffb07 11	14006d0	strip 43 LR :	40947.4	strip_10_LR :	40947.6	strip 46 LB	:40977.0	Eg.	2bit FPC	GA ID+6bit	channel
	BX+14		173ffaa6 163f	Efa30 15	53ffaf8	strip 40 LR :	40946.6	strip 41 LR :	40945.5	strip 42 LR	:40947.4	-0.			
	BX+15		1a3ffa7c 193f	Efc4d 18	83ffa9b	strip 37 LR :	40946.2	strip 38 LR :	40950.8	strip 39 LR	:40946.5	Ι.	"4x"	FPGA 1	
	BX+16		1d3ffc25 1c3f	Efc37 1b	b3ffae3	strip 34 LR :4	40950.4	strip 35 LR :	40950.5	strip 36 LR	: 40947.2	п	"∩v_1v'		
	BX+17		503ff17c 1f3f	Efc15 1e	e3ffc32	strip 31 LR :	40923.7	strip 32 LR :	40950 2	strip 33 LR	:40950.5			II GA U	
	BX+18		523ff067 513f	E£07b 4f	f4002e3	strip 29 LR :	40921.0	strip 30 LR :	40921.2	strip 16 LR	:40967.2	III.	"5x"	FPGA 1	
	BX+19		533ff028 523f	Efe8d 51	140079c	strip_28_LR :	40920.4	strip 29 LR :	40956.4	strip 30 LR	:40979.0				a a ditua a a a la
	BX+20		563fefb4 553f	Eefb1 54	43fefc3	strip_25_LR :	40919.3	strip_26_LR	40919.2	strip_27_LR	:40919.4	Ch	annei nu	mber is us	sed in each
↓ I	BX+21		593ff044 583f	E£004 57	73fefdb	strip_22_LR :	40920.7	strip_23_LR :	40920.0	strip_24_LR	:40919.6	ser	tor I/II/I	П	
finally	BX+22		5a3ffe73 5b3f	E£048 5a	a3ff049	strip_21_LR :	40956.1	strip_20_LR :	40920.7	strip_21_LR	:40920.7			•••	
many	-		III.FPGA1												
		32h	it received GB	T frame	from					_					

2023/16/26-erved GB 2022/9/25 FEB in time seq. 22 /16