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Infroduction

» The ATLAS High Level Trigger (HLT) selects
events based on

» Detectorreadout

> Level-1 Trigger decision, applying a
coarse selection

» Event selection is achieved by a set of

selection chains Level 1
Trigger
» Early algorithms within a chain reject as
many events as possible
> More CPU-intensive algorithms are 100 kHz
executed only on a small subset of
events ;
High Level
> The data is processed on a computing Trigger

farm with ~60k real CPU cores (2023)
3 kHz\A ——
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Run 3 Multi-Threaded HLT

» The HLT was redesigned to share the same code with offline reconstruction

» Support the Multi-Threaded mode
» Reduce the memory footprint of

the code (not an issue for online oL (D = Agorttms
OperOTion) Event1 Event3 Event 5
. Event 4 Time
» The upgrade benefits: | _ -
. - . Thread1 | —— — — ( F.‘ }_. _,
> Simplified maintenance of the : \ / \ i
code G /
Thread 2 ] J
> General performance / \
improvements Thremd 3 L.
> Integration of computing \ v / \
accelerators for future running Thread 4
periods v
» More details can be found in iy memery | "\ /ﬁ
p— N\
ATL-DAQ-PROC-2019-004

Inter-event
shared memory


https://cds.cern.ch/record/2674286
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Run 3 HLT configuration

» The Run 3 HLT Control Flow is generated . tapocessng
based on a list of algorithms organised in Fi.t;’;em/ Fifteitem \Fmer;{em
steps, performing reconstruction and |

Muon Muon+Electron Electron/Photon

. ! N I
SeleCTIO n ‘ Input maker / \

Input maker
Muon Rols i EM Rols

Reconstruction l, .« Reconstruction

Standalone muons . “t«.. .t " Calorimeter clustering

«, \ , ......... A/\r ‘\

» The steps are combined in chains and

Org(]nlsed in O SG'GCTIOI’] menU ‘ Hypo step 1 ‘ Hypo step 1 Hypo step 1
(. Mu,(,m Muon+Electron Ele?tron/Photon
s | ! \

Filter step 2 Filter step 2 Filter step 2 | Filter step 2
Muon Muon+Electron Electron | Photon

» The configuration is stored in JSON format : :
and can be provided transparently to HLT “ Sipmmn

. . Track Rols
in different ways: T ] 7
» From a database 'Iga‘asii)lgstt:;g:;r; | ‘ Lnﬁi‘:;nm;ﬁ;
> From O flle Reco_nstruction ‘ Reconstruction ‘ Reconstruction |
Combined muons ... & Electrons .Photons
» From a configuration in Python o NE \ N I
o N S fee e
> From ‘in-file meta-data’ (mostly used for ot mw et  —
Ofﬂine reconSTrU Cﬁon) ‘ Filter stepgi Filter step 3 Filter step 3 .Filtersteps
‘ Muon Muon-+Electron Electron R Photon
Input maker Input maker
Muon Rols EM cluster Rols

ATL-DAQ-PROC-2019-004
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Online performance

The configuration of the HLT Processing Unit and its CPU resource utilisation is

defined by 3 parameters

distributes events
HLTSV executes hard timeout

Number of process forks

Numlber of threads within the
process

HLTMPPU
Number of event slots defining e
how many events can be
. AthenaMT
executed in parallel per node configuration
template

N nodes

HLTMPPU
[child]
E lot
AharaliT
T threads Event Slot
S slots
\ Event Slot
HLTMPPU
[child]
Event Slot
AharaliT
T threads Event Slot
S slots
\ Event Slot
.
HLTMPPU
[child]
E |
AthenaMT
T threads Event Slot
S slots
N Event Slot

Figure from TriggerCoreSWPublicResults



https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerCoreSWPublicResults
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Online performance

» 1IN 2022 the online event processing was maximized with a pure Multi-

Processing configuration

» A pure Multi-Threaded configuration shows lower throughput
> It is still used for MC production, where memory savings are necessary

» Hybrid configurations also considered, giving similar gains in memory usage
without throughput penalty
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ATLAS HL-HLC Trigger System

> Trlg g er d e C|S|O ns m U C h m Ore Inner Tracker Calorimeters Muon System
A A : y ;

challenging at HL-LHC N EEEEEETTEr 1 T
: TR . 1034 -2 ¢-1 :

» Luminosity: 2 > 7.5-10°%cm“s e Lowuon__

> Pile-up: 60 > 200 Sector Logic ) | Proceseer.

> From 100kHz (2kHz) to TMHz (10 kHz) Endcap | (DT Trigger

for L‘I (HLT) E [gFT] Sectorv Logic Processor
o ;,_/E MUCTPI

> ATLAS detector upgrade

» New Tracker, new Timing Detector,

.y ! YiV, V! o
addifional muon chambers, new Tile [ e -
. CTP D S
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https://cds.cern.ch/record/2802799
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Event Filter

Commodity hardware:
» CPU (7.8/11.4 MHSO6 for Run4/5)

» Possibility w/ accelerators: GPU,
FPGA

Preliminary feasibility studies

» CPU showed x8 speed-up
» Use of GPU/FPGA looked promising

HS06 x seconds per event

First demonstrators started
» Tracking, calorimeters, muons

Better software, new algorithms and
commercial accelerators to handle
the computer challenges

Technology decision about the use

Dataflow

p
Event Storage Event
Builder Handler ||Aggregator
\,

400 [ I T T T T I T T T T I T T T T I T T T T I _]
- ATLAS ITk Simulation Internal 3
350 =
- —— Default Reconstruction, ITk Inclined Duals 3
300 - —e— Fast Reconstruction, ITk-22-02-00 Layout =
2501~ —
200F- =
150F- 3
100 =
50— —
O I
0 50 100 150 200 250
(w)
Data Handlers ("" LO trigger data (40 MHZ)
<~ = L0 accept signal
i <— Readout data (1 MHz)
4 \

<~ - EF accept signal
4: Output data (10 kHz)

l

_/

h

of accelerators in 2025

Event Filter

Processor Farm

Permanent
Storage



https://cds.cern.ch/record/2802799

26/10/23

Many many ongoing FPGA and GPU

studies

Track seeding, pattern recognifion,
track fitting, ambiguity removal, ...

Exploring use of High Level Synthesis

Hough transforms with FPGAs and

Graph Neural Network

Plan to use Acts Common Tracking
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EF fracking

Software

Track candidate efficiency (truth-matched)

Experiment independent toolkit for

track reconstruction

Support for accelerators and heterogenous %T% M
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EF Calo: demonstrated topological

Cell Clustering with GPUs

Speed-up wri CPU
» ~3.5fordi-jetsat<u >~ 20
» ~S55forttat<u>~80

Exploring FPGAs alternatives

Physics, Performance & Event
Selection group coordinates
simulation, performance and
trigger menu development for
Level-0 and EF algorithms
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EF Calo and PPES
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Muon frigger fracking studies

Toy model inspired by the New
Small Wheel in ATLAS

4 samples produced with different
noise rates: 2, 5, 10 and 15 kHz/cm?

A target is used to emulate effect
from correlated background

Evaluation of clustering and pattern

recognition performance on CPU,
GPU and FPGAs

ATLAS NSW Preliminary
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Muon cluster reconstruction  vcs ik

> A cluster is formed from neighbouring hits and typically the weighted centroid

: Y cirin < Qstrins Xstri
of the cluster is used : X jysrey = —rps “SIPS ~STPS

Qstrips

» The known challenges with the standard approach are:
» Depending on the incidence angle of the muon, a degradation is expected //"

Effective Track

> “Correlated” background that originates from = o E e

interactions with material prior to the active

1 l

layers S

ML is good Input variables: j DNN RMS: 1097

candidate to » Total number of hits

improve clustering belonging to the cluster | °]
oerformance > The charge/position of | ~
the strip with highest N
charge >
> The charge/position of a
its two left-right closest 1

Deep Neural Network neighbours o I = S—

Residuals [mm]


https://indico.cern.ch/event/1068941/contributions/4530136/attachments/2313258/3937295/TDAQweek.pdf
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Muon cluster reconstruction

Model inferred in FPGA using Vitis-Al Flow (Xilinx)

(prupingl) quaitization compilation
S — optiona ——T
| )\ b — e \ , 100101010010
I © 8 e . b : % o | |<1)(])(1)gtl)?t‘)?(])?(])<l)
L 3 |
> e > > >
| ; 101100101
DeﬂseN(?;aaé)Ne'W““ (Lessnupn::;mgf ram) : | (L Olé'a'“manon - f'm‘;’wmk. |
pepnisien prasabeslg L ! oo M—
float (pruned) " mener FPGA inference
float model model quantized model
30000 A
> Quantization converts 32-bit Different tests
floating point weights and 25000 1Fl0at model (GPU)
activations to fixed-point INT8 Quantized model (GPU)
20000 {FPGA
» Many quantization models 15000 -
available
10000 -
» No re-training was performed, S 000
accepting a small degradation of
performance 0l . : . : . : : :
-2.0 —-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Residuals (mm)
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DNN: inference time results

» CPU is already well within the latency requirements

» GPU with TensorRT improves a bit further

» No significant gain observed over both architectures

'a‘ _I | T T T T 1 11 | T T T T T 11 ]
£ - ATLAS Simulation Preliminary -+ GPU, TensorRT i
) Toy detector, DNN model i Unga, Gpwc
g 10z O U250 E
= = e CPU, ONNX ]
) L i
&) L -
C
(O] - -
S
)
c 1 o L E
- = * ° R
B ° |
L o -
o
107, + + 05 + * " =
1 0—2 | | | | | | | 1 11 | | | | | | 1 11 |
1 10 10°

batch size
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Pattern recognition and tracking

» AIM: we want to identify which hits belong to the tfrack and which are
background hits
» Current algorithm for offline reconstruction are not optimized for NSW:

» Large number of fakes with high occupancy, with consequent time
increase

Current pattern finding algorithm: Hough transform (HT)

Implementing new machine learning algorithm to test on FPGA

Recurrent Neural Network
fw fw tw bw Designed to deal with
v | : l [:'> — R -- —~-- . sequential data
C ' l > ] ! [ ) I ' l ]V At each step, it takes as
input at fime t the output at
@ @ @ @ time t-1




strip position

1500

1000

500

—500

-1000

-1500

26/10/23

Decrease of performance seen at higher

rates (expected) 10 g
Performance show improvements over a g
naive HT model :

10°
Model evaluated on CPU only ® £

Using ONNX on CPU, inference for a single10
event of O(1 ms) — well within the |ately
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RNN performance resulis

Performance evaluated for different rates

Toy model

ol

Signal
Background

HLT requirement = ;
c = H :
8 : @ RNN, sample 2 kHz/cm?
% 0.9 R ¥ HT, sample 2 kHz/cm?
Prediction : @ RNN, sample 5 kHz/cm?
) - ¥ HT, sample 5 kHz/cm?
0.8 ;
Toy mOde| 15 kHz/cm : @ RNN, sample 10 kHz/cm? :
_ ¥ HT, sample 10 kHz/cm?
0.7 :._ .......... ° :
== == - = - C M
e - = E
— BE: e —_— 0.6 __: ................................... ' .................................... ' -----------------------------------------------------------------
= — - = :
—m=—"=c=— — = = - z s 5
== --;t g = 0.5 R e e o
04~
| | | | 0.3Ll i i i
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Alternative: a CNN approach

. . Toy model
» In order o test the algorithm with Alveo ol |
cards, a CNN was also developed . 2
» Not optimal approach for pattern
recognition but useful for testing FPGA o
performance 8
> An event display franslated intfo a 3000x16 -
pixel 2D image
> Convolution/deconvolution operations e
are used Toy model
sonvIranspose o
f ’ % No significant loss in
sl performance for float model
J to FPGA inference
’ o (3,16,32) (4,36,48) (5.77.64) : :i: nt
(10,162,128) P - — float | ' ' '

rej
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CNN: inference time resulis

» CNN model successfully tested on CPU, GPU and several FPGAs

» Overall CPU already meets the requirement imposed by the HLT latency
> Largest improvements is seen with TensorRT on GPU

> CPU load 1o be studied, as well as the power dissipations

'a‘ :I | T T T T T T T T | T T T T | :

£ | ATLAS Simulation Preliminary -+ 9PU,IT%n§8%RT i
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Conclusion & outlook

» During the current Run 3, redesign of ATLAS HLT framework to support the
Multi-Threaded mode and to share reconstruction modules with offline

» HLT farm upgrade, increasing the performance to 2.0M HS06 (start of 2023)

» HLT upgrade based on a mix of commodity and custom solutions for HL-LHC
» Most projects already passes many reviews
> Prototypes available for many projects

» Event Filter
» Investigating accelerator options, technology decision in 2025

» Toy models have been implemented in order to investigate fiming
performance on commercial accelerator cards

» Choice will be a balance between:
> Implementation complexity of novel technologies to the HLT farm and costs
» Gain in power consumption and CPU load (yet to be studied)
> Time performance... as well as cost

» Preliminary studies suggest that CPU are already suitable for this task
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Hardware platforms
AMDZDU

Vitis Al

Adaptable & Real-Time Al Inference Acceleration

hls 4 ml

Direct HLC implementation into
FPGAs

Require implementation of a neural
network in VHDL or similar

Significant effort to do so
Platform developed and
maintained for HEP community

exists: his4m|

Fand suitable for a Level-0 trigger

Use commercial accelerator cards
which offer integrated platform for
deployment

Commercially available, no ad-hoc
maintenance

Dedicated hardware and related
software to franslate from high level
python codes, into code
executable in dedicated hardware

Not as fast as the other approach,
but suitable for a HLT trigger


https://fastmachinelearning.org/hls4ml/
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Vitis-Al overview

» Xllinx offers several accelerator card designed and built o accelerate ML
algorithms (mostly CNN)

» The claim is that inference and throughput are improved over standard COU
and GPU

» Improvements also expected in terms of power consumption

User Application

Frameworks OPyTorch  7F TensorFlow gy ONNX

Fast
Vitis Al Models Model Zoo

Highest Performance

Al Compiler | Al Quantizer | Al Optimizer

» Up to 90X higher performance than
CPUs" on key workloads at one-third the
cost?

Vitis Al Al Profiler | Al Library
Development Kit

Vitis Al Runtime (VART)

e Over 4X higher inference throughput® and
3X latency advantage over GPU-based
solutions®

Overlay Deep Learning Processing Unit (DPU)



https://www.xilinx.com/products/boards-and-kits/alveo.html
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vantisation & compilation

) / Figure: VAI Quantizer Workflow
Figure: Vitis Al Optimizer
e - < Float Model >
A\ " T Not used so far, needs
° o o o i i A
\ " a license, potentially
™ © useful Preprocess
Dense Neural Netwg Pruning Pruned Neural Network
(FP32 d (Less number of param) (FP32)
Al Optimizer Y
Calibration Quantize Weight
/ Dataset &
(without labels) Calibrate Activation Vitis Al quantizer
Figure: Vitis Al Quantizer
Generate DPU Model
e . e . (deploy_model.pb)
« o Otamize « - (deploy.caffemodel)
- Parameter - (model_name.xmodel)
[ ( ] [ ] &)
o Quantize o
P Activation P
Neural Network Quantization Neural Network DPU Deployment
(FP32) (Less bits per param) (INT8)
Al Quantizer X24603-121020
Figure: Vitis Al Complier
g P Table: DPUs on Different Hardware Platforms
e DPU Name Hardware platform
e 100101010010
[ ] (] 110010101011 DPUCZDX8G Zynq® UltraScale+™ MPSoC
[ ] 0010010170100
] o 101100101010 DPUCAHX8H Alveo™ U50LV, U55C Data Center accelerator cards
110010010101
P v 001011001010 DPUCADF8H Alveo U200, U250 Data Center accelerator cards
Al Quantizer DPU Instruction DPUCVDX8G Versal® ACAP VCK190 evaluation board, Versal Al Core Series
Al Compiler DPUCVDX8H Versal ACAP VCK5000 evaluation kit
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» Hardware:

» Supermicro Server, installed
in Bat40-5-D05

» Graphics card: NVIDIA
Quadro RTX A5000 PB 24 GB

» FPGA cards : Xilinx U50, U250
and Alveo VCK5000
Accelerator Card

» Study of new ML algorithms for

clusters positions reconsfruction
and pattern recognition with the
NSW (HLT Run-3)

Performance studies of ML
algorithms in FPGA(Run-4)

« SW

Francesco Giuli - francesco.giuli@cern.ch

Testbed installation

¢ Ubuntu 18.04

* OS needs to be validated against Xilinx tools

* Docker

* Docker GPU support

¢ Nuvidia drivers, CUDA tools

 Xilinx Vitis (2021.2) development tool

« Xilinx Vitis-Al (2.0) docker images (Tensorflow, Pytorch, compilers, Realtime

support)

* Xilinx Realtime environment (XRT) and platform support.

¢ Samba

¢ X2Go server

¢ DHCP server for local network

e Support

* many tickets opened to Xilinx Support to reach this stage.

« only a subset of all potentially interesting NN architectures is
supported by the current tool, but a significant improvement is found
with new releases.
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Inference studies

> offers several accelerator card designed and built to accelerate ML

algorithms (mostly CNN)

XILINX

ALVEO : Also a
Mk e 7_ has been tested

st fully software defined, fully t fe nd Big Data applicatio Deliv
celerated SmartNIC C a or is Xilinx's most powerful Alveo accelerat
factor, and armed with 100 GbE networking, PCle

Gend, and HBM2. Designed to deploy in any server.

Fast

Highest Performance

» Up to 90X higher performance than
CPUs on key workloads at one-third the
cost?

« Over 4X higher inference throughput® and
3X latency advantage over GPU-based
solutions®



https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/vck5000.html
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The processing units

Figure: DPUCZDX8G Architecture

Figure: DPUCAHX8H Top-Level Block Diagram
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More about the Alveo VCK5000 accelerator board later in the talk
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Muon identification and tracking

Work started during software development for the New Small Wheel (NSW)

Study the implementation of Deep Neural Network (DNN) for:

» |dentification of cluster produced by muons in Micromega (MM) and
Small TGC (STGC) chambers

» Optimization of the single-point (i.e. by layer) position resolution

» Cancel or mifigate the effect of backgrounds, in particular those
correlated to the muon track

Study Recurrent Neural Network (RNN) or other possible Al-based approaches
(i.,e. Convoluted Neural Network — CNN) for pattern recognition, muon
idenftification and momentum measurement

» Combine the layers info in a pattern across all muons stations

» Compare to other existing approached i.e. Hough Transform

Models initially thought for the offline, proved to be a good benchmark for
studies on Al-accelerators



26/10/23 Francesco Giuli - francesco.giuli@cern.ch

Why ML?

» Current methods performances worsen with correlated background cause of
showers produced by muons in the last part of the JD shielding

» ML algorithms implemented to:

» Classify clusters = assign different errors to the fit in track reconstruction
» Increase the single point resolution

» Mitigate effects of correlated background with dedicated NN training
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Pattern recognition and tracking

Truth Truth
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» Truth on top, black points represent background hits, while orange ones muon signal

» Predictions from the RNN at the bofttom (from black to orange, according to the RNN
output)

> The ‘X’ represents the hits which the output cuts (i.e. the hits used in the fit to determine
P1), While the blue line the reconstructed py or = 0.3BR
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Inference studies

» Torun the inference:
» ONNKX: “session.Run(input_names, batch_input_tensors, output_names)”

> TensorFlow: “Output = model.predict(input)”

Optimized CPU and GPU based model inference - Workflow
tf2onnx library

| ‘1'-“ \ Saved Model 2.0 ]
i for Tensorflow to
[@ ONNX ONNX model ]/' ONNX model

v v

N\
[ONI_\IX runtime ] [TensorRT Engine @—
engine y TensorFIOW

v

Optlmlzed CPU [ TensorRT ]
@ Inference in O(ms) ] . Runtlrie API

Optimized GPU
inference in O(ms)
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Inference studies

» Main point is that tensorRT does not work with dynamic batch sizes

» We want to study the inference time when varying the batch size

» Below is report the general workflow to change the batch size

TensorFlow Model

import onnx
onnx_model = onnx.load_model('model_singlelLoss.onnx')

BATCH_SIZE = 1

inputs = onnx_model.graph.input

for input in inputs:
diml = input.type.tensor_type.shape.dim[@]
diml.dim_value = BATCH_SIZE

model_name = "model_singlelLoss_mod.onnx"
onnx.save_model(onnx_model, model_name)

»  ONNX model + New ONNX model with fix bs

- ]

tensorRT

Example script
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Alveo VCK5000 accelerator board

We have 1 Alveo VCK5000 accelerator Scalar Engines
board, which allows us to run Al .
algorithms on Vector processor Arrays Cortex-A72

Cache

To look at new features, like pipelining

Arm

Adaptable Engines Intelligent Engines

=g=n

together different engine Kernels Saiect
Vitis 2022.3.5 have been installed =
Preliminary studies on the DNN with perd
batch size = 8:

» 2x (3x) slower than CPU (GPU)
» 2x faster than U50

(&
KT
g—e
€
=38

Timing seems to be independent from
the complexity of the model (number of

layers, weights, etc.) @
PCle
Next stepse Same studies for the CNN

(not supported currently)

NoC

PCle, QDMA,
XDMA

Al Engine Kernel 1

Al Engine Kernel 2

Vector Processor
Array (hard) Harden Blocks




