
HEP@home : AVolunteerComputingProject toRunFast
SimulationwithDelphes forCEPC

Ran Du, Jingyan Shi, Gang Li
{duran, shijy, li.gang}@ihep.ac.cn

Institute of High Energy Physics ,Chinese Academy of Sciences, Beijing, China, 100049

1 Introduction
Delphes is a C++ framework to perform a fast multipurpose detector response simulation. The
Circular Electron Positron Collider (CEPC) experiment runs fast simulation with a modified Delphes
based on specific scientific objectives. To get more computing resources for CEPC and make CEPC
better known by public, a Volunteer Computing project based on BOINC, HEP@home, is developed
to run Delphes as its first application.
The architecture of the HEP@home project is shown in Figure 1. Five parts are developed including
CEPC Delphes App, work generator, validator, assimilator and project web site.

Volunteer Computers

Docker Container

BOINC client

CEPC 
Delphes

App 

BOINC 
wrapper

Validator

Assimilator

workunit
Work

generator

Download
directory

Upload
directory

input files

Output files

HEP@home
project web site

workunit

BOINC Server

Figure 1: Architecture of the HEP@home project.

2 CEPC Delphes App
Delphes is a High Throughput Computing
(HTC) application with small input and output
files. Besides, to compile and run Delphes, only
ROOT software is dependent, which makes it
appropriate to run as a Volunteer Computing
application.
To run CEPC Delphes on Windows, a cus-
tomized docker image is composed. This image
contains all dependent software to run Delphes.
Besides, to get high availability, this image is up-
loaded to three docker registries. Figure 2 shows
the image uploaded to dockerhub.

Figure 2: Dockerhub image of the CEPC Delphes
App to run on volunteer computers.

3 Work Generator
The work generator is developed to submit
workunits(jobs) in batches. To make submission
in order, a MariaDB database delphes_task_db
is designed and adopted. All the metadata of
stdhep input files are organized into a three-level
hierarchy consisted with tasks, subtasks and in-
put files.
Besides, to make sure the server load is under
control, submitted workunits will be hold and
saved into a buffer if the server load is heavier
than threshold. When the load dropped back to
a normal level, buffered workunits will be resub-
mitted. Figure 3 shows the components of the
work generator.

submit_delphes_task.py submit_delphes_wu.sh

delphes_task_db

call

bin/create_work

call
read input files write run IDs

Figure 3: Components of the work generator.

4 Validator
Each output root file generated by Delphes on
volunteer computers will be uploaded back to
the server. When the output files are uploaded,
the validator will be called to double check based
on the requirements of application, and the vol-
unteers will get a number of credits if output
files are valid.
Different applications have specific validation
metrics, in our case, the validation metrics are
number of events, number of particles, momen-
tum resolution and energy resolution. Figure
4 show the components of the validator for
Delphes application.

BOINC validator daemon

delphes_val_events.C delphes_val_particles.C delphes_val_resolution.C

delphes_validator.py

call

Figure 4: Components of the validator.

5 Assimilator
Valid output files will be handled by the as-
similator. The assimilator for the Delphes ap-
plication will save root files and image files
in Lustre file system and a database named
hep_assimi_db. The root files saved in the Lus-
tre File System can be accessed by physicists
for later use, and meta data of these foot files
are saved in hep_assimi_db. Meanwhile, image
files saved in hep_assimi_db will be displayed
on the project web site. Figure 5 shows the com-
ponents of the assimilator.

BOINC assimilator daemon

delphes_assimilator.sh

delphes_assimilator_img.py delphes_assimilator_root.py

hep_assimi_db Lustre file system

call

save imge files
save metadata

save root files

Figure 5: Components of the assimilator.

6 Join HEP@home Project
As we mentioned earlier, image files generated by the assimilator will be displayed on the project web site as shown in Figure 6(a). Figure 6(b) shows
the procedure of running Delphes on a volunteer computer. Because the requirements of CEPC computing resources are quite large, we expect more and
more volunteers and computers will join us. Scan the QR code and visit HEP@home website, You are warmly welcomed to join us by scanning the QR
code.

Join HEP@home
https://ihepboinc.ihep.ac.cn/hep

(a)

(b)

(c)

Figure 6: (a)Output images of Delphes application. (b)Delphes workunits run on a volunteer computers. (c)QR code of HEP@home project.


