Introduction to quantum machine learning and its future application in High Energy Physics Problems

Abdualazem Fadol Mohammed

February 2, 2024

In High Energy Physics, machine learning plays a significant role in solving or improving problems such as

- **D** [Machine learning](https://en.wikipedia.org/wiki/Machine_learning) has blossomed in recent decades and has become essential in many fields.
- particle identification.
- \Box However, the introduction of quantum computers opened uncharted territories for exploration.
- There is a strong belief that **quantum computing** will change the computing world as we know it.

In several computing aspects:

- Improving the computing performance in general
	- Exponential speed up data pattern recognition, etc …
- Massive data warehouse, exponential, through entanglement.

Companies such as Google and IBM are committed to accelerating the development of quantum technology.

Introduction

Classical Machine learning seeks to find patterns in data.

Quantum Machine Learning: Based on the following approaches:

- \bullet Weather data is classical (C) or quantum (Q), and
- \bullet an algorithm runs in a classical (C) or quantum (Q) computer
- Quantum algorithms—an equivalent to classical algorithms: \Box Grover search and amplitude amplification Hybrid Training for Variational Algorithms

- O OPCA
- O OSVM
- O **QC**lustering

Introduction

IBM quantum computer

[Credited to Thomas Prior for TIME](https://time.com/6249784/quantum-computing-revolution/?utm_source=twitter&utm_medium=social&utm_campaign=editorial&utm_term=tech_security&linkId=198703144)

-
-
-
-
-

 \Box [IBM](https://quantum-computing.ibm.com) provides up to 127 qubits for free with an opportunity to apply for a researcher account with more qubits.

Origin quantum computer

Support vector machines

 \square [SVM](https://scikit-learn.org/stable/modules/svm.html) is a supervised machine learning algorithm used for classifications.

 \overline{a} \overline{a}

 \vec{x}_i is an n-dimensional vector, and \vec{y}_i is the class label of each data point. \overline{a} **Solution**

 $(\vec{x}_i, \vec{y}_i) = (\vec{x}_n, \vec{y}_n)$ ∫
∫ \overline{a}

Support vector machines

Kernel trick

The dot product of a feature \vec{x}_i and \vec{x}_j , after being transferred to a higher dimension via a function f , is called kernel.

 $k_{ij}(\vec{x}_i, \vec{x}_j) = \langle f(\vec{x}_i), f(\vec{x}_j) \rangle$

- Non-leaner futures can then mapped to a liner ones.
- The function $f(\vec{x})$ could be:
	- \bullet linear
	- polynomial
	- Radial basis function
	- sigmoid
- In our case, we'll be using a linear function;
- and we call the SMV a classical SVM.
- See examples here, also on our shared directory.

Quantum support vector machines

Quantum kernel

sion Hilbert space like $|\phi(\vec{x})\rangle\langle\phi(\vec{x})|$ in such a way that:

Feature map quantum circuits:

- ZZFeatureMap
- ZFeatureMap
- PauliFeatureMap
- □ Many more in Qiskit packages.

\Box In a quantum kernel, a classical feature \vec{x} is mapped to higher dimen-

 $k_{ij}(\vec{x}_i, \vec{x}_j) = |\langle \phi(\vec{x}_i)|\phi(\vec{x}_j)\rangle|^2$

Data encoding and processing

Variables

 e^+

O Entangling capability: the [Meyer-Wallach measure](https://arxiv.org/pdf/1905.10876.pdf) Hardware efficiency: qubits connectivity, fidelities …

Parametrised Quantum Circuits: useful for short-term quantum devices that can be defined using

Quantum feature-map (quantum circut)

- \Box tunable parameters.
- \Box Keeping in mind certain properties:
	- **O** [Expressibility](https://arxiv.org/pdf/1905.10876.pdf)

- The quantum feature map dictates the kernel:
	- **O** Single-qubit Hadamard gate
	- Single-qubit rotation gates $R_z(x)$ and $R_y(x)$
	- Two-qubit CNOT entangling gates
	- Two identical layers (depth)

Feature map and quantum kernel estimation

 The quantum support vector kernel estimation: $N \equiv$ Six qubits are mapped to six variables. \Box The expectation of each data point w.r.t the rest. $k(x_j, x_j) = \left| \begin{array}{c} 0 & \infty^N \mid U^{\dagger} \ \phi(x_i) \end{array} \right|$ $\overline{}$ $\ddot{}$ $U_{\vec{\phi}(x_j)}$ $|0^{\bigotimes N}$ $\overline{}$ 2

Feature map optimisation [ArXiv: 2209.12788](https://inspirehep.net/literature/2156652)

- The following feature map form was found to \cup work best for the $e^+e^- \to ZH \to \gamma \gamma q \overline{q}$ signal.
- Five thousand events were used with different rotation combinations $R_y(x)$ and $R_z(x)$. ⃗ $\overline{}$
- The current entanglements were the best. \cup
- The quantum circuit is repeated twice to achieve \cup better entanglements between qubits.
- The area under the curve (AUC) decides the best rotation and entanglements.

The quantum simulator has the following:

O Statevector Simulator developed by the **[Qiskit software package](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.StatevectorSimulator.html)**

A total of 12000 events were used.

The performance of the quantum simulator

O Six quantum bits or simply qubits

Six qubits were used for both quantum hardware.

- \Box 100 events were used for the training and testing.
- Comparable performance is observed between IBM's and Origin's quantum hardware.

The performance of quantum computers

[ArXiv: 2209.12788](https://inspirehep.net/literature/2156652)

Jet tagging classification in particle physics

- Particle: a list of features for each particle
- \Box Interactions: features involving a pair of particles
- Passing through a series of "attention" to MLP
- [ArXiv: 2202.03772](https://inspirehep.net/literature/2029602): Particle Transformer

The Particle Transformer

The Quantum Particle Transformer *Quantum Neural Network*

- Particle transformer
	- Multihead-Attention based on PyTorch
	- The idea is to replace this part with a quantum

The Quantum Particle Transformer

\square The implementation of the quantum self-attention

```
class QuantumSelfAttention(nn.Module):
def __init_(self, embed_size, heads):
    super(QuantumSelfAttention, self). __init__()
    self. embed_size = embed_sizeself. heads = headsself. head\_dim = embed\_size / / headsassert (self.head_dim * heads == embed_size), "Embed size needs to be divided by heads"
    self.values = QuantumLinearLayer(self.embed_size, self.head_dim)
    self.keys = QuantumLinearLayer(self.embed_size, self.head_dim)
    self.queries = QuantumLinearLayer(self.embed_size, self.head_dim)
    self.fc_out = QuantumLinearLayer(heads * self.head_dim, embed_size)
    #print(values.shape)
    #print(keys.shape)
    #print(queries.shape)
def forward(self, values, keys, queries, mask):
    N = queries shape [0]
    value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]
    values = self.values(vvalues)keys = self.keys(keys)queries = self.query(queries)values = values.reshape(N, value_len, self.heads, self.head_dim)
    keys = keys.reshape(N, key_len, self.heads, self.head_dim)
    queries = queries.reshape(N, query len, self.heads, self.head dim)
                                                                         def forward(self, x):
                                                                            x /= torch.sqrt(torch.sum(x**2))
    energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
                                                                            #qnn = QNNetwork(n_qubits)qnn_weights = algorithm_globals.random.random(self.qnn.num_weights)
                                                                            qnn_forward_batched = self.qnn.forward([x,x], qnn_weights)
    #if mask is not None:
                                                                            print(f"\nShape: {qnn_forward_batched.shape}")
         energy = energy.masked_fill(mask == 0, float("-le20"))#
                                                                            return qnn_forward_batched
    attention = torch.softmax(energy / (self.head_dim ** 0.5), dim=3)
    out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)
    out = self.fc_out(out)
```
return out

 \square The trainable parameters are added using the Anzatz with a feature-map that acts as an encoder. Pair input dim: 4

Two heads and one layer.

Results: ROC comparing ParT and QParT

Three classes were used with 10 particles:

 $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$ and $H \rightarrow gg$.

□ Network configurations:

 \Box Training and testing size: 2000 entries for each class. \Box Both are not better than the random classifier.

 \square The SVM result is on the left, and the particle transformer is on the right.

Particle Transformer: signal & background classification

Particle Transformer: signal & background classification

 \Box The PennyLane result is on the left, and the Qiskit is on the right for the transformer implementation.

 Provided a quick overview of the basic idea behind Quantum Machine Learning and

 showed, as an example, the support-vector machine:

A similar performance between classical and quantum was obtained.

Study the noise effect with a simplified model.

 Particle transformer is a bit complicated with all the self-attention added to it.

We constructed a quantum self-attention based on a quantum neural network.

22

Practical Tutorial

Check out the GitHub repository [Quantum-machine-learning-in-HEP](https://github.com/Abdualazem/Quantum-machine-learning-in-HEP?tab=readme-ov-file#readme). You can follow the instructions there to get the

 \Box README

Quantum Machine Learning Tutorial

How to set up?

Install all the required packages with Conda (Miniconda) as follows:

conda env create

You can now build the documentation by running:

make html

Notebooks are best edited in Jupyter Lab as follows:

jupyter lab

- **package.**
- **To run the Quantum Particle Transformer:**
	- **source /hpcfs/cepc/higgsgpu/amohammed/miniconda3/etc/profile.d/conda.sh**
	- **conda activate QParT**
	- **cp -r /hpcfs/cepc/higgsgpu/amohammed/QCWork/QParT .**
	- **./train_JetClass.sh QParT kin (make sure you disable the GPU)**
	- **To run on GPUS: you need to look at this line submit_to_gpus.sh.**
	- **Then do: source submit_to_gpus.sh**

