Precision Predictions for Top-quark Width

王烨凡 (山东大学)

arxiv: 2212.06341

in collaboration with 陈龙斌, 李海涛, 王健

第三届量子场论及其应用研讨会 2023-08-14

A (10) × (10) × (10)

Top-quark is the heaviest elementary particle in the Standard Model.

Top-quark provides the strongest coupling to the SM Higgs boson and opens doors to new physics.

イロト イポト イヨト イヨト

Top-quark mass is the one of the fundamental parameters in Standard Model.

Summary of the top-mass analyses at the LHC.

Top decay width Γ_t is one of fundamental properties of top-quark.

Due to its large mass, Γ_t is expected to be very large.

The measurement of Γ_t could hint at new-physics.

イロト イポト イヨト イヨト

The top-quark decays almost exclusively to Wb. $\Gamma_t = \Gamma_t(t \to Wb)$.

 $\begin{vmatrix} V_{\rm CKM} \end{vmatrix} = \\ \begin{pmatrix} 0.97435 \pm 0.00016 & 0.22500 \pm 0.00067 & 0.00369 \pm 0.00011 \\ 0.22486 \pm 0.00067 & 0.97349 \pm 0.00016 & 0.04182^{+0.00085} \\ 0.00857^{+0.00020} & 0.04110^{+0.00083} & 0.999118^{+0.000731} \\ 0.00057^{+0.00020} & 0.04110^{+0.00083} \\ \end{vmatrix}$

At LHC, the direct measurement is model independent but less precise, $\Gamma_t = 1.9 \pm 0.5$

GeV by ATLAS [ATLAS 2019].

The indirect measurement is model dependent but more precise,

 $\Gamma_t = 1.36 \pm 0.02 \text{ (stat.)}_{-0.11}^{+0.14} \text{ (syst.) GeV by CMS [CMS, 2014], which is the most precise measurement for } \Gamma_t$ by now.

In the future e^+e^- collider, Γ_t can be measured with an uncertainty of 30 MeV [Martinez, Miquel 2019].

王烨凡 (山东大学)

2023-08-14 5 / 21

On the theoretical side,

NLO QCD corrections [Jezabek, Kuhn 1989, Czarnecki 1990, Li, Oakes, Yuan 1991]

NLO EW corrections [Denner, Sack 1991, Eilam, Mendel, Migneron, Soni 1991]

Asymptotic analytic results of NNLO QCD corrections using $m_W \rightarrow 0$ and $m_W \rightarrow m_t$ [Czarnecki, Melnikov 1999, Chetyrkin, Harlander, Seidensticker, Steinhauser 1999, Blokland, Czarnecki, Slusarczyk, Tkachov 2004 2005]

Numerical result of full NNLO QCD corrections [Gao, Li, Zhu 2013, Brucherseifer, Caola, Melnikov 2013]

Full analytic results of NNLO QCD corrections [Chen, Li, Wang, Wang 2022]

王烨凡 (山东大学)

Precision Predictions for Top-quark Width

イロト イロト イヨト イヨト

Optical Theorem

Consider the three-loop self-energy diagrams Σ for $t \to Wb \to t$

$$\Gamma_t = \frac{\mathsf{Im}(\Sigma)}{m_t} \tag{1}$$

イロト イロト イヨト イヨト

The imaginary part comes from cut diagrams. For example,

The complicated phase space integration can be avoided.

王烨凡 (山东大学)

For $t \rightarrow Wb \rightarrow t$, b quark is massless.

After spin summation

$$u(k, m_t)\bar{u}(k, m_t) = k + m_t$$
 (2)

イロト イロト イヨト イヨト

the amplitudes can be written as the linear combination of scalar integrals. Then the IBP reduction can be used.

Method: canonical differential equations – see L.L.Yang's and L.B.Chen's talks.

Analytic calculations of three loop master integrals are non-trivial.

Two important ingredients: - see L.L.Yang's and L.B.Chen's talks.

1. Construct canonical form (ϵ form, $d \log$ form)

2. Boundary conditions – AMFlow [Liu, Ma 2022] and PSLQ method [Ferguson, Beiley, Arno 1992 1999]

Results: harmonic polylogarithms (HPLs), multiple polylogarithms (GPLs)

イロト イポト イヨト イヨト

Analytic Results

Combining analytic results of master integrals and IBP relations, the bare amplitudes are obtained.

After renomarization, QCD corrections of Γ_t up to NNLO.

$$\Gamma(t \to Wb) = \Gamma_0 \left[X_0 + \frac{\alpha_s}{\pi} X_1 + \left(\frac{\alpha_s}{\pi}\right)^2 X_2 \right],\tag{3}$$

$$\Gamma_0 = \frac{G_F m_t^3 |V_{tb}|^2}{8\sqrt{2}\pi}.$$
(4)

イロト イタト イヨト イヨト

The LO and NLO corrections are

$$\begin{split} X_0 &= (2w+1)(w-1)^2, \\ X_1 &= C_F \left(X_0 \left(-2H_{0,1}(w) + H_0(w)H_1(w) - \frac{\pi^2}{3} \right) + \frac{1}{2}(4w+5)(w-1)^2 H_1(w) \right. \\ &+ w(2w^2+w-1)H_0(w) + \frac{1}{4}(6w^3-15w^2+4w+5) \right) \end{split} \tag{5}$$

王烨凡 (山东大学)

2023-08-14 10 / 21

Analytic Results

According to color structure,

$$\Gamma(t \to Wb) = \Gamma_0 \left[X_0 + \frac{\alpha_s}{\pi} X_1 + \left(\frac{\alpha_s}{\pi}\right)^2 X_2 \right],\tag{6}$$

$$X_{2} = C_{F}(T_{R}n_{l}X_{l} + T_{R}n_{h}X_{h} + C_{F}X_{F} + C_{A}X_{A})$$
⁽⁷⁾

$$\begin{split} X_l &= -\frac{X_0}{3} \left[H_{0,1,0}(w) - H_{0,0,1}(w) - 2H_{0,1,1}(w) + 2H_{1,1,0}(w) - \pi^2 H_1(w) - 3\zeta(3) \right] + g_l(w), \\ X_F &= \frac{1}{12} X_0 \big[-6 \left(2H_{0,1,0,1}(w) + 6H_{1,0,0,1}(w) - 3H_{1,0,1,0}(w) - 12\zeta(3)H_1(w) \right) - \pi^2 H_{1,0}(w) \big] \\ &+ \left(X_0 + 4w \right) \left(-\frac{1}{6} \pi^2 H_{0,-1}(w) - 2H_{0,-1,0,1}(w) \right) \\ &+ \frac{1}{12} \left(18w^3 - 3w^2 + 76w + 15 \right) \pi^2 H_{0,1}(w) - \frac{1}{2} \left(4w^3 - 2w^2 + 4w + 3 \right) H_{0,0,0,1}(w) \\ &+ \frac{1}{2} \left(4w^3 - 2w^2 + 16w + 3 \right) H_{0,0,1,0}(w) + w \left(2w^2 - 7w - 16 \right) H_{0,0,1,1}(w) \\ &- \frac{1}{2} \left(2w^3 - 11w^2 - 28w - 1 \right) H_{0,1,1,0}(w) + \frac{1}{720} \pi^4 \left(42w^3 - 191w^2 - 328w - 11 \right) + g_F(w) \end{split}$$

王烨凡 (山东大学)

2023-08-14 11/21

Cross Check

Master integrals are confirmed by numerical check with AMFlow.

Two different gauges of W boson have been used to cross check.

The result expanded in w = 0 and w = 1 $(w = m_W^2/m_t^2)$ coincides with [Blokland, Czarnecki, Slusarczyk, Tkachov 2004 2005].

王烨凡 (山东大学)

Our results can be taken as the invariant mass spectrum in semileptonic $b
ightarrow uW^*$

Integrating over $w (w = m_W^2/m_t^2)$ from 0 to 1, reproduce NNLO QCD corrections in semileptonic decay $\Gamma(b \to X_u e \bar{\nu}_e)$ [Ritbergen 1999].

イロト イロト イヨト イヨト

Off-Shell W Boson

Including the W boson width $\Gamma_W = 2.085$ GeV, the Γ_t becomes [Jezabek, Kuhn 1989]

$$\tilde{\Gamma}_t \equiv \Gamma(t \to W^* b) = \frac{1}{\pi} \int_0^{m_t^2} dq^2 \frac{m_W \Gamma_W}{(q^2 - m_W^2)^2 + m_W^2 \Gamma_W^2} \Gamma_t(q^2/m_t^2), \tag{8}$$

In the narrow width limit, $\Gamma_W \to 0, \ \tilde{\Gamma}_t \to \Gamma_t.$

$$\begin{split} \tilde{\Gamma}_t &= \Gamma_0 \left[\tilde{X}_0 + \frac{\alpha_s}{\pi} \tilde{X}_1 + \left(\frac{\alpha_s}{\pi} \right)^2 \tilde{X}_2 \right], \quad r = \frac{\Gamma_W}{m_W}, \quad w = \frac{m_W^2}{m_t^2} \\ \tilde{X}_0 &= \frac{1}{2\pi} \big(- (2(r-i)w - i((r-i)w + i)^2 G(w + irw, 1)) \\ &- ((r+i)w - i)^2 2(r+i)w + i G(w - irw, 1) - 4r(1-2w)w \big), \end{split} \tag{9} \\ \tilde{X}_1 &= \frac{1}{18\pi} \big((r+i)w - i \big) (2(4\pi^2 - 9)(r+i)^2 w^2 + (4\pi^2 - 27)(1-ir)w + 4\pi^2 - 15) G(w - iw, 1) \\ &+ (r-i)w - i \big) (2(4\pi^2 - 9)(r-i)^2 w^2 + (4\pi^2 - 27)(1+ir)w + 4\pi^2 - 15) G(w + iw, 1) \\ &+ \cdots \big) \end{aligned} \tag{10}$$

王烨凡 (山东大学)

2023-08-14 14 / 21

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Numerical Results

Input parameters from [P.D.G 2022]

$$\begin{split} m_t &= 172.69 \text{ GeV}, \quad m_b = 4.78 \text{ GeV}, \\ m_W &= 80.377 \text{ GeV}, \quad \Gamma_W = 2.085 \text{ GeV}, \\ m_Z &= 91.1876 \text{ GeV}, \quad G_F = 1.16638 \times 10^{-5} \text{ GeV}^{-2}, \\ |V_{tb}| &= 1, \quad \alpha_s(m_Z) = 0.1179. \end{split}$$
 (11)

 $\Gamma_t^{(0)}=1.486~{\rm GeV}$ with $m_b=0$ and on-shell W.

$$\begin{split} \Gamma_t &= \Gamma_t^{(0)} [(1 + \delta_b^{(0)} + \delta_W^{(0)}) \\ &+ (\delta_b^{(1)} + \delta_W^{(1)} + \delta_{\rm EW}^{(1)} + \delta_{\rm QCD}^{(1)}) \\ &+ (\delta_b^{(2)} + \delta_W^{(2)} + \delta_{\rm EW}^{(2)} + \delta_{\rm QCD}^{(2)} + \delta_{\rm EW \times QCD}^{(2)})] \end{split} \tag{12}$$

ヘロト 人間 とくほとく ほとう

2023-08-14 15 / 21

2

Numerical Results

Corrections in percentage (%) normalized by the LO width $\Gamma_t^{(0)}=1.486~{\rm GeV}$ with $m_b=0$ and on-shell W.

	$\delta_b^{(i)}$	$\delta_W^{(i)}$	$\delta_{\rm EW}^{(i)}$	$\delta^{(i)}_{\rm QCD}$	Γ_t [GeV]
LO	-0.273	-1.544	_	—	1.459
NLO	0.126	0.132	1.683	-8.575	1.361
NNLO	*	0.030	*	-2.070	1.331

QCD corrections are dominant.

NLO EW correction is 1.683%.

The off-shell W boson effect at NNLO is further suppressed.

The b quark mass correction at NLO is not severely suppressed compared to the LO

due to the large logarithms.

王烨凡 (山东大学)

2023-08-14 16 / 21

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Top-quark mass varies from 170 GeV to 175 GeV.

The width changes from 1.258 GeV to 1.394 GeV.

イロト イポト イヨト イヨト

Theoretical Uncertainties

QCD renormalization scale $\mu \in [m_t/2, 2m_t]$, the variation is about $\pm 0.8\%$ and $\pm 0.4\%$ at NLO and NNLO.

 $\overline{\mathrm{MS}}$ scheme differs from on-shell scheme -3.79% and 0.09% at NLO and NNLO.

Missing NNNLO QCD contribution would be of the order of 0.4%.

王烨凡 (山东大学)

2023-08-14 18 / 21

(4回) (4回) (4回)

The uncertainties at NNLO from $\alpha_s(m_Z) = 0.1179 \pm 0.0009$ and $m_W = 80.377 \pm 0.012$ GeV [P.D.G 2022] are 0.1% and 0.01%.

The deviation between the α and G_F scheme in the EW correction is 0.1% at NLO.

The missing NNLO EW as well as the mixed $EW \times QCD$ corrections.

Considering all the possible uncertainties, the uncertainty at NNLO is less than 1%.

王烨凡 (山东大学)

イロト イロト イヨト イヨト

Mathematica program TopWidth

Mathematica program TopWidth can be downloaded from

https://github.com/haitaoli1/TopWidth. The package HPL is required [Maitre 2006].

<< TopWidth

(****** TopWidth-1.0 ******) Authors: Long-Bin Chen, Hai Tao Li, Jian Wang, YeFan Wang TopWidth[QCDorder, mbCorr, WwidthCorr, EWcorr, mu] is provided for top width calculations Please cite the paper for reference: arXiv:2212.06341 *-*-*-*-* HPL 2.0 *-*-*-*-* Author: Daniel Maitre, University of Zurich Rules for minimal set loaded for weights: 2, 3, 4, 5, 6, Rules for minimal set for + - weights loaded for weights: 2, 3, 4, 5, 6. Table of MZVs loaded up to weight 6 Table of values at I loaded up to weight 6 \$HPLFunctions gives a list of the functions of the package. \$HPLOptions gives a list of the options of the package. More info in hep-ph/0507152, hep-ph/0703052 and at http://krone.physik.unizh.ch/~maitreda/HPL/ (* SetParameters[mt, mb, mw, Wwidth, mz, IGF1 *) (* If the parameters are not set by the users the code will use the default ones *) $\mathsf{SetParameters}\Big[\frac{17\,269}{100}\ ,\ \frac{478}{100}\ ,\ 80\ 377\ /\ 1000\ ,\ 2085\ /\ 1000\ ,\ 911\ 876\ /\ 10\ 000\ ,\ 11\ 663\ 788\ \times\ 10^{-12}\Big]$ (* NNLO decay width *) TopWidth 2, 1 (* with mb effects *), 1 (* with Tw effects*), 1 (* with NLO EW effects *), $\frac{17269}{100}$

1.33051

Summary and Outlook

We provide the first full analytic result of top-quark width at NNLO in QCD, which can be used to perform both fast and accurate evaluations.

The off-shell W boson contribution is calculated analytically up to NNLO in QCD.

The most precise top-quark width is predicted to be 1.331 GeV for mt = 172.69 GeV with the total theoretical uncertainty less than 1%.

The next target is NNNLO QCD corrections for top-quark width.

