Higgs boson pair production and decay to $b\overline{b}\gamma\gamma$ at NLO in QCD

Dan Zhao Shandong University

in collaboration with Haitao Li, Zongguo Si, Jian Wang, Xiao Zhang

量子场论及其应用研讨会

北京 2023.8.14

OUTLINE

- 1. Introduction and motivation
- 2. Framework
- 3. Numerical result
- 4. Summary

Why we study Higgs boson pair production?

Higgs pair production is a key to probing Higgs self-coupling!

The trilinear Higgs self-coupling λ is important for examing the shape of Higgs potential and understanding EWSB.

Higgs pair production by ggF: Theoretical (partial) Status

Main production channel

Heavy top limit:

N3LO+N3LL: [Ajjath, Shao, arXiv:2209.03914] N3LO: [Chen, Li ,Shao,Wang , arXiv:1909.06808] NNLO: [de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev,arXiv:1606.09519] NLO+NNLL: [Shao, Li ,Li ,Wang, arXiv:1301.1245]

Finite mt dependence:

 NNLO_{FTapprox} +NNLL: [De Florian, Mazzitelli,arXiv:1807.03704]
 NNLO_{FTapprox}: [Grazzini, Heinrich, Jones, Kallweit, Kerner, ArXiv:1803.02463](applyed by CMS and ATLAS)
 NLO+NLL: [Feerera, Pires,arXiv:1609.01691]
 NLO: [Borowka, et al ,arXiv:1608.14798, arXiv:1604.06477]
 NLO EW: [Davies, Schonwald , Steinhauserc ,Zhang, arXiv:2308.01355]
 NNLO: [Mazzitelli,arXiv:2206.14667]
 [Czakon, Harlander, Klappert, Niggetiedt,arXiv:2105.04436]
 NLO: [Baglio, Campanario, Glaus, Muhlleitner, Spira, Streicher, arXiv:1811.05692]

 $\kappa - framework$ [CERN-2013-004 (CERN, 2013)]

 $\sigma(gg \to HH) \sim \frac{\sigma(gg \to H)}{1000}$

 $\kappa_{\lambda} = \frac{\lambda_{HHH}^{EXP}}{\lambda_{HHH}^{SM}}$ $\kappa - framework$ $HH \rightarrow b\bar{b}\gamma\gamma$ has the highest S/B.

- $HH \rightarrow b\bar{b}b\bar{b}$ has the highest branching ratio.
- $HH \rightarrow b\bar{b}\tau\tau$ has middle S/B and branching ratio.

ATLAS:	Final states	Obs.	Exp.	
	$b\overline{b}b\overline{b}$	[-3.5,11.3]	[-5.4,11.4]	[ATLAS,arXiv:2301.03212]
	$b \overline{b} \gamma \gamma$	[-1.5,6.7]	[-2.4,7.7]	[ATLAS,arXiv:2112.11876]
	$b\overline{b} au au$	[-2.4,9.2]	[-2.0,9.0]	[ATLAS-CONF-2021-052]
	Combine	[-0.6,6.6]	[-2.1,7.8]	[ATLAS,PLB 843(2023)137745]

CMS:	Final states	Obs.	Exp.	
	$b\overline{b}b\overline{b}$	[-2.3,9.4]	[-5.0,12.0]	[CMS,arXiV:2202.09617]
	$b\overline{b}\gamma\gamma$	[-3.3,8.5]	[-2.5,8.2]	[CMS,arXiv:2011.12373]
	$b\overline{b} au au$	[-1.7,8.7]	[-2.9,9.8]	[CMS,arXiv:2206.09401]
	Combine	[-1.24,6.49]	[-2.28,7.94]	[Higgs 2022, N. De Filippis's talk

$$\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$$

Expected self-coupling modifier at 95% C.L. Single- and di-Higgs combination: Run 2: $\kappa_{\lambda} \in [-1.9, 7.6]$

Constraint is still loose.

[ATL-PHYS-PUB-2022-053]

Framework

• For the specific Higgs pair decay model $H_1 \rightarrow X_1, H_2 \rightarrow X_2$, in the frame of narrow width approximation, we have,

$$\sigma_{pro+dec}(X_1, X_2) = \sigma_{pro} \frac{\int d\Gamma_{H_1 \to X_1}}{\Gamma_{H_1 \to X_1}} \frac{\int d\Gamma_{H_2 \to X_2}}{\Gamma_{H_2 \to X_2}} \times R(H_1 \to X_1) R(H_2 \to X_2).$$

The cross-section can be expanded in a series of strong coupling,

$$\sigma_{pro+dec(\bar{b}b,\gamma\gamma)}^{(0)} = \sigma_{pro}^{(0)} \frac{\int d\Gamma_{H_1 \to b\bar{b}}^{(0)}}{\Gamma_{H_1 \to b\bar{b}}^{(0)}} \frac{\int d\Gamma_{H_2 \to \gamma\gamma}^{(0)}}{\Gamma_{H_2 \to \gamma\gamma}^{(0)}} \times R(H_1 \to b\bar{b})R(H_2 \to \gamma\gamma).$$
 LO

$$\sigma_{pro+dec(\bar{b}b,\gamma\gamma)}^{pro(1)} = \sigma_{pro}^{(1)} \frac{\int d\Gamma_{H_1 \to b\bar{b}}^{(0)}}{\Gamma_{H_1 \to b\bar{b}}^{(0)}} \frac{\int d\Gamma_{H_2 \to \gamma\gamma}^{(0)}}{\Gamma_{H_2 \to \gamma\gamma}^{(0)}} \times R(H_1 \to b\bar{b})R(H_2 \to \gamma\gamma). \qquad \delta NLO^{pro} \times LO^{dec}$$

Framework

$$\sigma_{pro+dec(b\bar{b},\gamma\gamma)}^{dec(1)} = \sigma_{pro}^{(0)} \frac{1}{\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)}} \frac{1}{\Gamma_{H_{2}\rightarrow\gamma\gamma}^{(0)}} \int d\Gamma_{H_{1}\rightarrow b\bar{b}}^{(1)} \int d\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)} \int d\Gamma_{H_{2}\rightarrow\gamma\gamma}^{(0)} \times R(H_{1}\rightarrow b\bar{b})R(H_{2}\rightarrow\gamma\gamma) \qquad \text{Numerator expanding}$$

$$-\sigma_{pro}^{(0)} \frac{\Gamma_{H_{1}\rightarrow b\bar{b}}^{(1)}}{(\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)})^{2}} \frac{1}{\Gamma_{H_{2}\rightarrow\gamma\gamma}^{(0)}} \int d\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)} \int d\Gamma_{H_{2}\rightarrow\gamma\gamma}^{(0)} \times R(H_{1}\rightarrow b\bar{b})R(H_{2}\rightarrow\gamma\gamma) \qquad \text{Denominator expanding}$$

$$\sigma_{pro+dec(\bar{b}b,\gamma\gamma)}^{dec(1)} = \sigma_{pro}^{(0)} \frac{\int d\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)}}{\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)}} \frac{\int d\Gamma_{H_{2}\rightarrow\gamma\gamma}^{(0)}}{\Gamma_{H_{2}\rightarrow\gamma\gamma}^{(0)}} \left(\frac{\int d\Gamma_{H_{1}\rightarrow b\bar{b}}^{(1)}}{\int d\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)}} - \frac{\Gamma_{H_{1}\rightarrow b\bar{b}}^{(1)}}{\Gamma_{H_{1}\rightarrow b\bar{b}}^{(0)}} \right) \times R(H_{1}\rightarrow b\bar{b})R(H_{2}\rightarrow\gamma\gamma) \qquad LO^{pro}\times\delta NLO^{dec}$$

This contribution is 0 in the total cross-section. Why we consider its correction effects ?

Why we ignore the decay $H_2 \rightarrow \gamma \gamma$ NLO QCD correction ?

$$\dots \left(\frac{\int d\Gamma_{H_2 \to \gamma\gamma}^{(1)}}{\int d\Gamma_{H_2 \to \gamma\gamma}^{(0)}} - \frac{\Gamma_{H_2 \to \gamma\gamma}^{(1)}}{\Gamma_{H_2 \to \gamma\gamma}^{(0)}} \right) \dots = 0$$

Agree with [arXiv:1909.06808] (HTL) and [arXiv:1608.14798] (SM)

	without decays	with decays but no cuts		with decays and cuts					
		LO ^{dec}	$\delta \text{NLO}^{\text{dec}}$	LO ^{dec}	$\delta \mathrm{NLO}^{\mathrm{dec}}$				
LO_{∞}^{pro}	$17.07^{+31\%}_{-22\%}$	$0.02257^{+31\%}_{-22\%}$	0	$0.01257^{+30\%}_{-22\%}$	$-0.001750^{+42\%}_{-28\%}$				
$LO_{m_t}^{pro}$	$19.85_{-21\%}^{+\overline{28}\%}$	$0.02624_{-20\%}^{+\bar{2}\bar{8}\%}$	0	$0.01393^{+\bar{2}\bar{8}\%}_{-20\%}$	$-0.001684_{-27\%}^{+40\%}$				
$\delta \text{NLO}_{\infty}^{\text{pro}}$	$14.86^{+6\%}_{-7\%}$	$0.01964^{+6\%}_{-7\%}$	_	$0.01064^{+6\%}_{-7\%}$	_				
$\delta \text{NLO}_{m_t}^{\text{pro}}$	$13.08^{+4\%}_{-8\%}$	$0.01730^{+4\%}_{-8\%}$	—	$0.009333^{+3\%}_{-10\%}$	_				
NLO_{∞}	$31.93^{+18\%}_{-15\%}$	$0.04221^{+18\%}_{-15\%}$		$0.02146^{+15\%}_{-14\%}$					
NLO_{m_t}	$32.93^{+14\%}_{-13\%}$	$0.04354^{+14\%}_{-13\%}$		$0.02160^{+15\%}_{-11\%}$					

In numerical data:

 $R(H \rightarrow b\overline{b}) \times R(H \rightarrow \gamma\gamma) = 58.24\% \times 0.227\% = 0.13\%$

 $LO^{pro}LO^{dec} = LO^{pro} \times R(H \to b\bar{b}) \times R(H \to \gamma\gamma)$

 $\delta NLO^{pro}LO^{dec} = \delta NLO^{pro} \times R(H \to b\bar{b}) \times R(H \to \gamma\gamma)$

$$LO^{pro}\delta NLO^{dec} = \cdots \left(\frac{\int d\Gamma_{H_1 \to b\bar{b}}^{(1)}}{\int d\Gamma_{H_1 \to b\bar{b}}^{(0)}} - \frac{\Gamma_{H_1 \to b\bar{b}}^{(1)}}{\Gamma_{H_1 \to b\bar{b}}^{(0)}} \right) \dots = 0$$

Confirm the validity of our numerical program.

 $\left(LO_{m_t}^{pro} \delta NLO^{dec} / LO_{m_t}^{pro} LO^{dec} \right) \stackrel{Cut}{\Longrightarrow} - 12\%$ $\left(LO_{\infty}^{pro} \delta NLO^{dec} / LO_{\infty}^{pro} LO^{dec} \right) \stackrel{Cut}{\Longrightarrow} - 14\%$

Larger than N³LO QCD correction (~+6%) [Chen,Li,Shao,Wang, arXiv:1910.00012]

Reconstructed Higgs is different from intermediate Higgs

In the peak region, the QCD correction is as large as about -20%.

- The NLO decay cross-section is negative but some differential region is still positive.
- The K-factor is not constant.

Summary

- Higgs self-coupling λ_{HHH} is important for SM and the best way to directly measure λ_{HHH} is from Higgs pair production.
- The experiment uncertainty will be reduced at the period of Run 3 although the constraint on κ_{λ} is loose up to now.
- The QCD correction in decay is significant especially for cross-section after cut.
- $\delta NLO^{dec} \sim -12\%$ (-14%) with respect to LO (up to -20% for distributions)

Thank you !