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Cosmological Collider Physics

 Signals versus background

e Helical chemical potential

Partial Mellin-Barnes representation
 Full results for tree-level processes
* Nonlocal signals for loop-level processes

 Cutting rule and factorization

Improved cosmological bootstrap

* From bulk to boundary
* Folded limit

Summary & Outlooks
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Cosmological Collider Physics

Inflation seems to be the highest energy observable process,

with the energy scale characterized by the Hubble parameter,
H ~ 101*GeV.

During the inflation, particles with mass m = H could be
spontaneously produced due to the quantum fluctuations, and
then leave imprints in the inflation correlators.

The inflation correlators have some characteristic oscillatory
patterns with respect to the logarithm of momentum ratios,
which we would call a Cosmological Collider (CC) signal.

By measuring the frequency of this oscillating signal, we can
recover the mass of the massive particle.
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Spacetime metric:

1
ds? = a?(1)[—d7? + dx?], a(t) = ——
Ht’
4
T=T 0
o Y
Particle production in dS.

Here o denotes the
heavy particle and ¢
denotes the inflaton.
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Example of a 3pt
] correlator (bispectrum).

(k1 /ks)2S (ky, ko, ks) x 103

logyq k1 /ks




Cosmological Collider Physics

* 2pt correlator 1s trivial (with no CC signal).
ky
* 3pt correlator is easier for measurement. ki k, 4
3
: : k;
* 4pt correlator is easier to calculate.
General momentum configuration. Squeezed limit configuration.

In general the 4pt function has the form:

<(pk1(pk2 (pkg (pk4>, ~ K(ei)x](kl; kZJ k31 kll-r kSr kt)

| Baumann, et al: 1811.00024.
Here the factor K(6;) is purely kinematic. In the squeezed limit k; — 0, the
dynamic piece can be divided into three part: g 0.10 il
. _ - production Example of a 4pt
lim | = Jerr /L + INL- > correlator.
ks—0 L EFT
* Jerr: EFT term, or the background piece. Fully analytic in both r; and 7. ol
« J.: Local signal, proportional to (17 /7,)T'“. Analytic in k. e
. Momentum ratio
« JnL: Nonlocal signal, proportional to (r;75) . Nonanalytic in k.
Convention:
Oscillatory pattern: ke Skt ke
A (ry1,)" + c.c. = 2|A| cos[wlog(r 1) + 9. Momentum ratios: K, K,
n=—— rp =-——.
k12 k34
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Inflation Correlators are Hard to Calculate!

A? . . .
~ = m 1in Minkowski.
= 6k Z ab / dridry etk DL (K, 72). in de Sitter.
1
(See Chen, Wang, Xianyu: 1703.10166 for SK formalism.)
D_y (ks; = T e (ry7y)32HD (—kyry ) HP
Whyr) —+( sy T1, 7-2) 4 € (TIT ) ( ) ( 37—2)
. . D,_ (ks; 71, 7-2) = —+(k3; 71, 7-2),

* Lack of time translation symmetry. Dy (ks;71,7) = Dy (ko 71, 7)0(T1 — 7o) + Dy (ks 71, 75)0(75 — 71),
 Special functions in the mode function. D__(ks; 11, 72) = Dy (ks; 71, 72)0(71 — 72) + Dy (ki3 71, 72)0(72 — 71).

Time ordering is encountered.

Inflation patch is dS-boost-breaking.
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Helical Chemical Potential

Usually the CC signals suffer the Boltzmann expression ~ e 2™ for large mass, so one must break some symmetry for
a large signal. Consider the following action for spin-1 gauge boson with an extra axion-type interaction:

1 1
S = / d*z [\/ —g( 7 9" 9" F Foe — Engﬁ“’ A, Ay) + %EWW F. FPU] Wang, Xianyu, 2004.02887.

This action is both P-violating & dS-boost breaking. We find that the mode function (and thus the
CC signals) for one helicity state is enhanced

With a rolling background: ¢ = ¢t + const., and defining the
exponentially by the chemical potential!

chemical potential: u = ¢, /A, the EoM reads:

Ag — 8J2A0 + (QCLHAO)/ + a2m2A0 — 0,
Al — 97 A; + 2aHO; Ag + a®m> A; + 2apie;j,07 A¥ = 0.

We can then solve the mode functions:

Re A_(k,7)

eFTH/2

V2k

B k) = TR 72 (=P (k)

B®) (k1) = Wiz o (2ikT),
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Seed Integrals

We define dimensionless seed integrals for convenience. Inflation correlators can be expressed as a
combination of the seed integrals. Our task is then to calculate these seed integrals.

0

» Scalar seed: TEP2 (g ry) = —ab k2P P2 / dridry (—71 )Pt (—T)P2eidkrzmtibhaara g on
— OO
AY — l)\ 2 412 T, = A Z T (11, 1r3)
— 2 a SO o v 16k1k2k3k4k?ab::l: 2 ’
2,4
1 4.9 _ ATy 72,2
AL = JAea ¢0 Toe = T6kskakshaks abz::i b (o)
)\AQ 0.—2 ©k,
B¢ = <§0k Pk, Pk >é — lim Il; (Tl ’7’2) Oks o, Pka
! 2 3 8k1k2k§ ro—1— a,bzz:j: a ) o
A 0 . . \
» Helical vector seed: Igb)plpz = — ab k3 TPrtp2 / drdry (=71 )P (—Ty P2 gl¥F12T1 FHibR34T ng)(ks; T1,T2)
— OO

eTTh
2k
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Partial Mellin-Barnes representation

For QFT in flat spacetime, Fourier transform is useful, since its the kernel is the eigenmode of translation.

In dS, there 1s no more time translation, but we have dilation symmetry. The corresponding integral transform is the
so-called Mellin transform:

c+ico

F(s) = j dz 257 (2),  f(z) = f Z—LZ-SF(S).
) |

C—10

Partial MB Rep: Only perform the inverse Mellin transform to the internal modes.

Scalar propagators: zQ, Xianyu: 2205.01692, 2208.13790.

1 ioo d d . k\ —2s
D:i:IF(k; 1, 7‘2) = / iﬁ e:Fm(31—32) (_) 12 (_7_1)—231—{—3/2(_7_2)_232+3/2

dr | ., 2mi 2mi 2
y I‘[ iv N iv iv N iﬁ]
81 2 781 2 782 2 782 2 )

Dy (k;m,72) = Dey(k;mi,72)0(m1 — o) + Diz(k; 71, 72)0(12 — 7).

The time integrals and the loop integrals are then simplified. The price is the integral of the Mellin variables.
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Partial Mellin-Barnes representation

* The opposite-sign seed integral becomes:

Ip1p2 (')”17 7"2) = 4i6:Fi7r(P1—P2)/2,ri>/2+p1rg/2+p2 /loo ds; ds, ( r )—231 (T_2> o,

m oo 2mi 2m1 \ 2 2

Xr[pl+%_2317p2+%_232a81_%781"'%782_%,32"'%]-

e Under the rearrangement: D:H:(k;Tl,Tz) = Dz(k‘; 7'1,7'2) <+ [D§(k, T1,7'2) — Dz(k; '7'1,7'2)] 0(7’2 — 7'1).

The same-sign seed integral becomes: TP (ry, ) = I8 S (r1,72) + I8 00 o (11,72). (11 <72)

1 ds; ds 1\ 251 / 7o \ —252
w2 _ = Fim(p1+p2)/2,.5/2+p1,.5/2+p2 841 B +2ims; ( 1) ( 2)
Tir> = 4r° I /_ o 2m 2m TG 2

5 5 iv iv iv iv
X F[p1+5—2$1,p2+5 — 282,81 — 5,81+ 5,82 — ?,824—7],

ioco
Iplp2 1 Fim(p1 +p2)/2 5+p1 +p2 d31 d82 +2i7s, +2imso 1“1 —2s12
++T0,> = 4-¢ - 5. (Fe + ie )
4m 21 2mi 9

—ioco

X I‘[p2+ % —289,p1 + P2+ 5 — 2812,81 — %’31""%782_ %’82_*_ %]
_n
(] '

* Then we only need to finish the Mellin integral using the residue theorem.
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Tree-Level Cutting Rule

The appropriate contour and poles are the following: For factorized part:
2 ¥ _ local signal
..... S 512 s1=-mF o, s2=-mpx - =>I0CaAlSIgna
- 1V iv ,
Se e e o D s1=-mF 5, s2=-nzF - =>nonlocal signal

For time-ordered (non-factorized) part:

.'... ° ° ° ° ) 17// 17/,
si=-—mF o, s=-mpE o => background
iv iv
31=—n1:F7, 82=—n2:F7 =}O

Recall that the MB rep for the propagator:

1 [ ds; d . E\ —2s
Di:F(k; T1, 7'2) — / iﬁ e:Fl7r(31—32) (_) 12(_Tl)_231+3/2(_7_2)—232-{-3/2

Ar | ., 2mi 2mi 2
o I‘[ iv N iv iv N iﬁ]
81 2 b 81 2 b 82 2 b 82 2 )

D (k;m,72) = Di(k; 1, 72)0(11 — 7o) + Dig(k; 71, 72)0(T2 — 71).

The four propagators become identical at the nonlocal poles. So we can replace D,;, by Re[D] to calculate the nonlocal signal!
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Bootstrap Equations

* Original bootstrap: Symmetry implies differential equations. Baumann, et al: 1811.00024, 1910.14051, 2005.04234.

* Our bootstrap: EoM of propagators (mode functions) implies ODE for correlators. Applicable to dS-

boost breaking cases. ZQ, Xianyu: 2208.13790, 2301.07047.
292 2_2 2 . —
(1707, —2m0-, + Kk 10 +m*)Dix(ks;11,72) =0

(7'12831 — 27 0-, + kngz + mQ)Dii(kS; T1,To) = 4217127'225(7'1 — Ty)

Insert the
differential
operator in the
O dr, dn, . . integrand before
—2,—2 - 71 A72  jakip7i+ibksats . g
T, (7”1,7"2) = —abk; /_Oo —7_12 —7_22 € Dab(ksa7'177'2)- the propagator,

then commute it
with the time
integral using IBP.

_ R
(03 =102, =200y, + (7 + ) |23 P (rym2) = 0

riro
r1+ 7o

| R
(rF =)0, = 200, + (7 4 )| 22 ) =
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(r? — 7“1)6‘2 — 2130, + (’52 +
(3 = )02, — 2070, + (7 +

1
4

1

i)

4

i)

—2,—2
I72

I_2 —2

(r1,72)

(r1,72) =

As an ODE, the solution to the bootstrap equations is the sum of two parts:

* Homogeneous solution:

The homogeneous solution can be expressed in terms of the hypergeometric functions. In particular, the

=0

ri7ra2
r1+ 7o

homogeneous solution is factorized and nonanalytic in 7 5, so it corresponds to the signals.

* Inhomogeneous solution:

We solve the inhomogeneous solution with an ansatz:

Z o can be given by setting appropriate boundary conditions. We find the inhomogeneous solution is analytic in both

71 and 15, so it is exactly the background.
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Z(Tl,’l"g) =T Z (—

m,n=0

r1
m nrl _
()

),



Improved Cosmological Bootstrap

* We find a change of variables: u; , = 217 /(1 + 7y 3) 1s crucial for analytically

solving the bootstrap equation for vector seed integral: zQ, Xianyu: 2208.13790.

i e ., 1 i

(uf — )2, — (1 by, + (7 + 7 )| T (g, uz) = 0

: 1 : 1 1 ULU ky >0
2 3\ 92 L~ 2 ~2 (h)—1,—1 _ 12

_(U1 —uy)0y, — (1 £ihp)uidy, + (V + Z)_ Iyt " (ur,uz) = DR ‘ nol

* It 1s also useful for deriving closed-form formula for 3pt and 2pt correlators:

k,—-0
To derive a 3pt correlator, we should set , = 1 = u, in the 4pt correlator. We find the ‘ ;11‘_)’11
source term in the RHS becomes simply ~ u. This allows us to solve the bootstrap

equation in a closed-form.

Similarly, to derive a 2pt correlator we should then set 7, = 1 = u4 1in the 3pt correlator.
Deriving 3pt and 2pt correlator

This can be done if carefully dealing with the spurious divergence. by taking single and double
folded limits, respectively.

7.Q, Xianyu: 2301.07047.
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Other Results

| scalar lo'op, v=4 |

Different particle species and different types of

interaction give rise to different phases.
7.Q, Xianyu: 2205.01692.

| vector loop, T=h-4 |

Jr,n)r

\ 1} ] 'l :
\ \/ / | | | .
\ /™M / \'(s' \\/ ! Signals Background
\ \/ \ / R / V / J
% \/ \/ \/ \/
. . L . R N 6 0.0
0.6 0.8 1.0 1.2 1.4 1.6 —=
4+ _ [ =3
—logyo 0.5 —
2
g . —-1.0r
ST 2 Y R S o - =
v —hp = 8 \\
@ = " S -1st
i“«, ; (2 -2 \\\ %d
' £ g _al N - Local -2.0f
| -6 \*\Nonlocal a5l
| ‘\
¥ \ Y uy = upy = 0.5
: k 4 2 0 2 4 TS 0 5 10
et hji hji

Signals exponentially sensitive to chemical

Local and nonlocal signals with chemical potential. potential. Background insensitive.

7, Xianyu: 2208.13790. ZQ, Xianyu: 2208.13790.
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Summary & Outlooks

 Calculation of inflation correlators are important (but difficult).
» Useful for particle model buildings, parameter scanning, template design, ...

e Amplitudes in dS are least understood among the three maximally symmetric spacetimes.

« Inflation provides a very high energy scale at H ~ 101*GeV.

* Two very useful methods are developed, both applicable to helical correlators, and tree level
calculations are basically solved.
* Partial MB representation.

* Bootstrap equations
 Cutting rule as a byproduct.
e Qutlooks:

* Full results for general tree graph.
* Nonlocal signal for general loop graph. ZQ. Xianyu: 2304.13295, 2308 xxxxx.
* Local signal for general loop graph graph (on going).

* Deeper understanding of analytical structure of inflation correlators.
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Partial Mellin-Barnes representation

~2,-2
* [} ” as an example:

T (ryre) = T8 (1, m2) + L Pro (r1, 72)

2

—2,—-2 _ ’ dr; dm +i(k1271+k3472)
I Vps(rre) =—ks 3 3¢ D+ (kg;T1,7T2)
1 2

— OO

_ (rira)'? /ioo ds1 dsy ; simss) ( o >_231< T2 )_252
4 i 2mi 27 2 2

1 1 iv iv
xF[7—281,7—282,81 251+ 2 s — Foso+ ]

1/2 100 _
Z—2,—2 _ (T1T2) / dSl ds? (_i€2i7rs1 + i€2i7T82)( " ) 2512
++,TO,> A7 o 2m 27i 2

X F[% — 282,1 — 2812,81 —

Xgﬁll
2

Analytical calculation of inflation correlators

< - 232, 1 — 2519
282

- n

ro

1V 1V
281t 5 S2

A

1V
252 T

iv
2

TCE
[ ] [ ] [ [ ] D)
...... -

[ [ ] [ [ ] D)

iv iv

s1=—mF o 82:—n2:|:7

B iv B iv

S1 = n1:F2, S2 = n2:|:2
Contributing to

local/nonlocal signals in the

Factorized part;

and to background/0 in the
Time-Ordered part.



* Spectral decomposition

ddq o0 ~1 v dS /1
ong Dv,ab (q; 7'1,7'2)D?J,ab(|ks - Q|;7'1,7'2) = / dv" —pS°> (V') D ab (s 71, 72)
(2) B g!
oq(V) ( \
_ Pk, - Pky
- a5 % pg(fl") oy, (V')
Pko Pks
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* PMB for one loop bubble:

T oy — )\2 179 )3+2i71'
N0 ™ 056m7/2k; - - - ky(K1oksy)5/2 4

o0 (_1)’n1234 (frl )2n13 ( T'9 )2n24
% Z nl!nz!n3!n4! 2 2

ni,n2,n3,nqa=

(1 — cosh 27v) (

x I'4 + 27’&13 + 217/’, 4 + 2n24 + 21'5, —np, — 17), —nNg — IT/’, —nN3z — 17/’, —Ny — 17)]

x I’

- .~ o~ 3 .
% + nqg + 1V, % + n3q + 1V, —Ny3q — 5 — 20V
—MNig — lg, —MN3q4 — 17/’, 3+ N19234 + 2iv

+ c.c..
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