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Dimensional Regularization

Dimensional Regularization (DR) for Feynman integrals [Hooft, Veltman 72; Bollini, Giambiagi 72]

gµµ = D ≡ 4− 2ϵ

d4 l
(2π)4

→ µ2ϵDR
dD l
(2π)D

p1

p2

l

l + p1 + p2

l + p1

Invariant under arbitrary loop momentum shifts (→ IBP)

Complex analytic/meromorphic functions of kinematics and D
Lorentz and gauge symmetries manifestly preserved (in non-chiral theory)

UV and IR divergences regularized with one (mass-dimensionless) ϵ = 4−D
2

(“One ring to rule them all”)
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The γ5-issue in DR: absence of an AC-γ5

Assuming
{
γµ , γν

}
= 2 gµν and

{
γµ , γ5

}
= 0 in gµ

µ = D dimenisons:

Bring γα through the 4 γµi and use γα γα = D 1̂:

Tr
[
γα γµ1

γµ2
γµ3

γµ4
γα γ5

]
=

(D− 8
)

Tr
[
γµ1

γµ2
γµ3

γµ4
γ5

]
Cyclicity of the trace and anticommutativity of γ5:

Tr
[
γα γµ1 γµ2 γµ3 γµ4 γ

α γ5

]
= −DTr

[
γµ1 γµ2 γµ3 γµ4 γ5

]
Resulting (D− 4

)
Tr

[
γµ1 γµ2 γµ3 γµ4 γ5

]
= 0

No fully anticommuting γ5 = − i
4!ϵ

µνρσγµγνγργσ in D ̸=4 dimensions
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The γ5-issue in DR: chirality-violation by a non-AC-γ5

Yet, γ5’s anticommutativity ∆ac
5 ≡

{
γµ , γ5

}
= 0 is crucial

for Chiral Lorentz/Gauge symmetries in 4 dimensions.

∆ac
5 ∼ O(ϵ) ̸= 0 implies loss of chirality-conservation by the regulator in use!

ψ̄ γµγ5ψ ̸= ψ̄L γµγ5ψL + ψ̄R γµγ5ψR
with ψL/R ≡ 1

2

(
1̂ ± γ5

)
ψ

Chirality of a spinor is not preserved under Lorentz transformation!

[
γ5 , σ

µν] ̸= 0 ,[
γ5 , Λ(θ)

]
̸= 0

with σµν ≡ 1
2

[
γµ , γν

]
and Λ(θ) ≡ exp

(
θµν σ

µν
)
.

Axial-current conservation and chiral Ward identities are thus expected to be affected at O(ϵ)
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γ5-issue in DR: the Axial Anomaly

A naive use of a formally anticommuting γ5 in DR (pretending not vanishing),

Tr
[
γ5 γµ1 · · · γµN

]
= −

i
4!
ϵµνρσTr

[
γµγνγργσ γµ1 · · · γµN

]
does not (always) work, most prominently, signified in the failure to reproduce the following

famous axial anomaly:

+ ∂µj
µ

5∂µj
µ

5

“vanishes” with translational invariant loop integrals and an anticommuting γ5.

The perturbative pinch identity(
/p1

+ /p2

)
γ5 =

(
/l + /p1

−m)
γ5 + γ5

(
/l − /p2

−m)
+ 2m γ5 +∆ac

5 (l)
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The Adler-Bell-Jackiw Anomaly

The anomalous axial-vector divergence equation [Adler 69; Bell, Jackiw 69]

∂µ ψ̄ γ
µγ5 ψ = 2mf ψ̄ iγ5 ψ − α

4π
ϵµνρσFµνFρσ .

Diagrammatically,

=∂µj
µ
5 2mf ψ̄iγ5ψ

α
4π
FF̃+

The one-loop VVA-triangle is regularization independant under vector-current conservation

▶ Form factor decomposition [Rosenberg 63]
▶ Proper shift of linearly-divergant integrals [Adler, Bell, Jackiw 69, 85]
▶ Dispersion relations [Dolgov, Zakharov 71]

The Adler-Bardeen theorem [Adler, Bardeen 69] : “one-loop” exact

A wonderful recount by Adler [hep-th/0405040]
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The intriguing axial anomaly in QFT

Gauge/internal anomalies must cancel !
▶ The Standard Model is anomaly free
▶ Constraints on gauge couplings of New particles
▶ Anomaly matching [’t Hooft et al. 80], Spontaneous chiral symmetry breaking ...

Global/external anomalies are allowed and important
▶ π → γγ decay [Steinberger 49; Sutherland, Veltman 67; Adler 69; Bell, Jackiw 69]

∂µ Jµ5,(3) = fπ m2
π π(3) − α

8π
ϵµνρσFµνFρσ

▶ U(1)A/η′ problem [Weinberg 75; ’t Hooft 76]

▶ Strong CP problem and Axion [Peccei, Quinn 77] ...

Practical applications of renormalization of anomalous ψ̄γµγ5ψ
▶ Treatment of the singlet axial-current operator in heavy-top EFT [Chetyrkin, Kühn 91 93;

LC, Czakon, Niggetiedt 21]

▶ Structure of the non-decoupling heavy-quark-mass logarithms [Collins, Wilczek, Zee 78;

Chetyrkin, Kühn 93; LC, Czakon 22]

▶ Polarized structure and splitting functions [Matiounine, Smith, Neerven; Moch, Vermaseren, Vogt;

Blümlein, Marquard, Schneider, Schönwald; Tarasov, Venugopalan...]

▶ ......
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The SM Lagrangian

The Standard Model is a Quantum Field Theory based on the chiral gauge groupSUc(3)⊗ SUL(2)⊗ UY(1) with spontaneous symmetry breaking by Higgs potential.
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The SM Lagrangian at a closer look
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The HV-variants based on non-AC γ5

The HV/BM [72, 79] prescription of γ5 in dimensional regularization:

γ5 = i γ0γ1γ2γ3 = −
i
4!
εµνρσγ

µγνγργσ

γµγ5→
1

2

(
γµγ5 − γ5γµ

)
= −

i
6
εµνρσγ

νγργσ ,

∆ac
5 ≡

{
γµ , γ5

}
∼ O(ϵ) ̸= 0 .

“Symmetrization” needed to have a hermitian axial-current [Akyeampong, Delbourgo 77; Fujii, Ohta, Taniguchi 81]

Advantages:
Unambiguous expressions for any
Feynman diagrams

Easy to implement reliably on computer

In principle applicable to all-order (SM)

Particularly simple for QCD corrections
(Additional renormalisation needed
currently known to O(a5s ) in MS [LC, Czakon 23])

Disadvantages:
▶ Loss of γ5 anticommutativity → Spurious

Ward-Takahashi identities violation
[Bardeen et al 72, Chanowitz et al, Trueman, Kodaira 79]

▶ Additional γ5-vertex renormalizations with
a-priori unknown coefficients[Jµ5 ]R = ZJ ψ̄B [γµ, γ5]/2ψB
(systematically obtainable to any pertubative order;

but more structrues needed for SM)

▶ Traces with high γ powers in case of
multiple γ5
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Operator Renormalization in Larin’s prescription

The all-order axial-anomaly equation [Adler 69; Adler, Bardeen 69]

[
∂µJµ5 ]R = as nf TF

[FF̃]R
with FF̃ ≡ −ϵµνρσFaµνFaρσ in QCD with nf massless quarks.

The renormalization of the operators involved: [Adler 69; Espriu,Tarrach 82; Breitenlohner,Maison,Stelle 84;

Bos 92; Larin 93 ... ]

d
d lnµ2

([
∂µJµ5 ]R[FF̃]R

)
=

d
d lnµ2

( ZJ 0ZFJ ZFF̃
)

·
([
∂µJµ5 ]B[FF̃]B

)
=

(
γs 0
γFJ γFF̃

)
·
([
∂µJµ5 ]R[FF̃]R

)

The so-called Larin’s prescription [Larin, Vermaseren 91; Larin 93]:
▶ ϵµνρσ treated outside R-operation formally in D dimensions [Larin, Vermaseren 91; Zijlstra, Neerven 92]

▶ Take ZFF̃ and ZFJ in MS then determine ZJ ≡ Zf5 Zms5 by ABJ eq. with ϵ-independent Zf5
ZFF̃ = Zas verified to 4-loop in QCD [Ahmed, LC, Czakon 21] later proved exactly [Lüscher, Weisz 21]

ZJ = Zf5 Zms5 with Zms5 at O(a5s ) and Zf5 at O(a4s ) currently known [LC, Czakon 21, 22]

10



No γ5-odd Dirac-trace, No problem

If γ5 is on open fermion lines, shift γ5 anticommutatively into the external spinor or
projector. [Bardeen 72]

γ5

PO

PI

If γ5 appear on closed fermion chain in even numbers, anticommute and
γ2
5 = 1̂ [Chanowitz et.al 79; Gottlieb et.al 79].

µ ν

p

γ5 γ5
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γ5-odd Dirac-trace has no overall UV divergence

What to do with a closed fermion chain with odd number of γ5?

γ5-odd Dirac-trace has no overall UV divergence in SM!

(No gauge-boson self-interaction vertices with ϵµνρσ in Feynman Rules for SM)

The guiding principles [Kreimer 94]:

▶ anticommute γ5 outside of the vertex loop correction with
sub-UV-divergences.

▶ Sub-UV-divergences must be computed unambiguously for all
diagrams with (Charge-conjugation and Bose) symmetry ensured.
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Why look at the AC-γ5 prescription again

If a thorough usage of γ5 avoids the additional renormalizations, does[
∂µJµA5,s

]
B = aBs nf TF

[FF̃]B hold automatically?

[Kreimer 94]

Is it necessary to use the fancy non-cyclic trace [Kreimer 90, 94; Körner, Kreimer, Schilcher 92]?

Although having improper points in [Körner, Kreimer, Schilcher 92] corrected, [Kreimer 94] seems
to cover only the configuration:

How to define the fermion chain
unambiguously in an
algorithmic way in general
Feynman diagrams in SM?

Does one have to treat ϵµνρσ in 4 dimensions?

Does the IR-divergence in loop amplitudes matter?
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(I) Isolate the target fermion loop

The Question:

Given a closed fermion chain possibly embedded in a big Feynman diagram, what are
its external legs relevant for defining the γ5-trace, and how to identify them
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(I) Isolate the target fermion loop

My Answer:
The minimal cut to isolate the target fermion loop into a minimal 1PI diagram (containing
this fermion loop) with each of its external momenta equal to the difference between
certain pair of fermion propagators, plus a minimal number of complementary diagrams
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(II) maximal 1PI open G5f�f

Given a diagram G with one external (axial-field) A5 with momentum insertion Q on a fermion
chain Fc, identify maximal 1PI open G5f�f in the following algorithmic way [LC 23].

γ5

PO

PI

Q

Find all pairs of propagators of Fc satisfying PO − PI = Q, each qualifies as a two-fermion
cut (TFC) of Fc;
Examine each TFC, exclude those leading to prop. with the same momenta (as the cut) in
the cut-subchain with A5, effectively ensuring 1PI condition;

Pick up the TFC resulting the largest 1PI cut-subchain G5f�f with A5, identified, respectively,
as the I/O-leg according to fermion-flow direction.

Fc is written out in direction against fermion charge flow, but is otherwise allowed to start from
any (!) vertex or propagator cyclically permuted.

16



(III-1) Symmetrization

γ5

PO

PI

Q

The final expression F̄c for the fermion chain Fc is defined as:

F̄c ≡ 1

2

(FA5→Ihc + FA5→Otc
)

FA5→Ihc is obtained from Fc by a.c. shifting γ5 from A5 to the head of the I-leg
propagator SIF(PI), subsequently replaced by

− i
4!
ϵµνρσγµγνγργσ ≡ γ̂5 .

Similarly for FA5→Otc , albeit with head replaced by tail .

The above symmetrization is necessary to ensure Furry’s theorem, just like
γµγ5→ 1

2

(
γµγ5 − γ5γµ

)
in HV.
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(III-2) Symmetrization

γ5

PO

PI

Q

If an even number of A5 on the same Fc in G, γ2
5 = 1̂ results in a unique trace

expression free of γ5 for Fc.
If an odd number N(≥ 3) of A5 on Fc, another level of symmetrization is needed to
reach an unambiguous trace for Fc:

¯̄Fc ≡ 1N
N∑
i=1

F̄[i]c .

Unlike the original Kreimer prescription, we demand the average for each Fc,
irrespective of whether A5 coupled to identical gauge or scalar bosons.
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(IV) Levi-Civita tensors

Multiple ϵµνρσ appear if several A5 on different (disconnected) Fc or from projectors.

ϵµνρσ defined only in 4 dimensions, just like γ5, in compatible with γ25 = 1̂.

Lack of the 4-dimensional Schouten identity → contraction ordering matters
[Breitenlohner, Maison 77; Siegel 80].

ϵµνρσϵµ
′ν′ρ′σ′

= Det
[gαα′]

, with α ∈ {µ, ν, ρ, σ} and α′ ∈ {µ′, ν′, ρ′, σ′},

Still possible to manipulate ϵµνρσ with D( ̸= 4)-dim. indices for specific problems
[Larin, Vermaseren 91; Zijlstra, Neerven 92; Moch, Vermaseren, Vogt 15]

▶ No need to implement dimensional splitting

▶ Contraction can be done before completing tensor loop integrals in D

In our calculation of vacuum-gg elements: no need γ2
5 = 1̂ and only one pair of ϵµνρσ.

19



(IV) Levi-Civita tensors

In our γ5 prescription, pairs of ϵµνρσ to be contracted must come from two
independent internal fermion chains or external “bosonic” projectors,
hence no compatibility issue with γ2

5 = 1̂ (applied always on the same Fc).
To eliminate the contraction-order ambiguity in ϵ1 ϵ2 ϵ3 ϵ4 · · · , partition them into
two subsets:

▶ For external ϵµνρσ , fix an arbitrary contraction-order adopted consistently in all bare
amplitudes (which can also be left undone to the very end!)

▶ For internal ϵµνρσ , take the symmetric average over all possible pairings
(as suggested by Prof. Y.Q. Ma), e.g.[

ϵ1 ϵ2 ϵ3 ϵ4
]
≡

1

3

([
ϵ1 ϵ2

][
ϵ3 ϵ4

]
+

[
ϵ1 ϵ3

][
ϵ2 ϵ4

]
+

[
ϵ1 ϵ4

][
ϵ2 ϵ3

])
The resulting spacetime-metric tensors gµν are set D-dimensional.

No issue is expected in application to SM at least to 3-loop:
a superficially UV-div. 1PI amplitude with two internal ϵµνρσ starts from 3-loop which is UV-finite.

20



VVA diagrams calculated in Kreimer-variant

Γµµ1µ2lhs (p1,p2) ≡
∫
d4xd4y e−ip1·x−iq·y ⟨0|T̂ [Jµ5 (y)Aµ1a (x)Aµ2a (0)] |0⟩|amp

According to Kreimer, seemingly among the common lore, one expects

Mlhs − nf TF Mrhs
∣∣∣
ϵ=0

= 0
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An observation on VVA diagrams in Kreimer-variant

Γµµ1µ2lhs (p1,p2) ≡
∫
d4xd4y e−ip1·x−iq·y ⟨0|T̂ [Jµ5 (y)Aµ1a (x)Aµ2a (0)] |0⟩|amp

 
problematic one

To our surprise (!), we find

Mlhs − nf TF Mrhs
∣∣∣
ϵ=0

= a2s 4nf CF + O(a3s )

22



Interpretation and checks of the observation in Kreimer-variant

The discrepancy

Mlhs − nf TF Mrhs
∣∣∣
ϵ=0

= a2s 4nf CF + O(a3s )

can be manually compensated by[JµA5,s
]
R = ZA5s

[JµA5,s
]
B + ZJK Kµ

ZJK = −1

2
nf CF a2s + O(a3s ) .

Kreimer scheme itself does not offer a constructive proof for the Adler-Bardeen
theorem, the ABJ equation does not hold automatically in bare form in this scheme.

The same issue appears with massive quarks at on-shell kinematics.

No such kind of issue observed if the axial-current vertex is replaced by
pseudo-scalar vertex.

The extra pieces cancel in non-anomalous combination of contributions from
isospin doublet ( e.g. top and bottom quarks)
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AC v.s. non-AC γ5

The HV-scheme variants
Advantages:

Unambiguous expressions for any
Feynman diagrams

Easy to implement reliably on computer

In principle applicable/doable to any order

Disadvantages:
▶ Loss of γ5 anticommutativity → Spurious

WTI violation
▶ Additional γ5-vertex renormalizations with

a-priori unknown coefficients
▶ Traces with high γ powers in case of

multiple γ5

Our revision of Kreimer scheme
Competitive features:

Unambiguous expressions for any
(non-anomalous) Feynman amplitude in SM

Easy to implement reliably on computer

Applicability to anomaly-free SM (at least
to 3-loop) and to all-order (still a
conjecture!)

Advantages:
▶ No spurious violation of non-anomalous

WTIs

▶ No need for additional γ5-vertex
renormalizations for non-anomalous
amplitudes (anomalous diagrams with VVA-type subgraphs

needs manual corrections [LC 23])

▶ No traces with exploding γ powers
generated by multiple γ5 insertion
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Summary and Outlook

2� Despite the known issue of γ5, similarly ϵµνρσ, in D ̸=4 dimensions,
practical prescriptions have been formulated that work successfully.

2� For the anomaly-free Standard Model, our revision of Kreimer scheme
(with few modification and extension) shall work (without ref. to the fancy
non-cyclic trace), at least to 3-loop, albeit still a conjecture.

2� For quantities with external axial anomalies, and in applications to EFTs
involving axial currents, γ5-vertices may need additional renormalization
even if treated using the revised AC-γ5 scheme.

2� If only QCD corrections are studied (e.g. in EFTs), then NAC-γ5 seems to
be more convenient (the 4-loop R.C.s known).

4 It is desirable to have the above conjecture scrutinized more stringently.
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Renormalization of ψ̄qγµγ5ψq
What is

[Jµ5, q]R as in
[Jµ5 ]R =

∑nli=1

[Jµ5, i]R?

[Jµ5 ]R = ZJ Jµ5 =
(Zns + nl Zs) nl∑

i=1

ψ̄Bi γµγ5 ψBiw�[Jµ5, q]R ̸=
(Zns + nl Zs) ψ̄Bq γµγ5 ψBq

=
(Zns ψ̄Bq γµγ5 ψBq + Zs

nl∑
i=1

ψ̄Bi γµγ5 ψBi
)

The renormalized singlet contribution featuring EW ab:
FAs,b(as,mt, µ) = ⟨0|

[Jµ5,b]R|bb̄⟩|singlet

= Zns Z2 FAs,b(âs, m̂t) + Zs Z2

(
FAns(âs, m̂t) +

nl∑
i=1

FAs,i(âs, m̂t)
)

Note: µ2 dZns
dµ2 = 0 while µ2 dZs

dµ2 = γ̄s
(Zns + nl Zs).
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Alternative renormalization prescriptions

MS scheme: Zms5

[Jµ5 ]B
▶ The ABJ (AWTI) is not respected

▶ FAs,b(as,mt)−FAs,t(as,mt) is still anomalous

Chetyrkin scheme: Zfns Zms5

[Jµ5 ]B
▶ The ABJ (AWTI) is not respected

▶ FAs,b(as,mt)−FAs,t(as,mt) is non-anomalous (correct)

Larin scheme: Zfs Zms5 ∂µ
[Jµ5 ]B = as nf TF(ZFF̃[Jµ5 ]B + ∂µ

[Jµ5 ]B)
▶ The ABJ (AWTI) is respected and γs ̸= 0

▶ FAs,b(as,mt)−FAs,t(as,mt) is non-anomalous (correct)

Renormalization-group invariant (RGI) scheme: Zext(as) ≡ P̂exp
( ∫ as

0
−γ̄s(a)
β(a) daa

)
▶ The ABJ (AWTI) is respected and γs = 0 (no more running!)

▶ ZRGIFF̃ ̸=Zαs
▶ No more explicit ln(µ2/m2t ) when expressed w.r.t αs(µ = mt) [LC, Czakon 22].
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An Amusing Pitfall in Applying non-AC γ5 to qq̄ → ZH
We observe that for the top-loop-induced (yt-dependant) qq̄ → ZH with a non-AC γ5:
the usual Zf5 Zms5 ψ̄γµγ5ψ prescription works for

but not for their counter-parts using effective Higgs-gluon vertex: [Ahmed, Bernreuther, LC,Czakon 20]

One needs additional counterms on top of the usual renormalized axial-current!
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Vacuum-Quark matrix element and AWTI

Much more efficient to extract ZJ by using the off-shell Ward-Takahashi identity
for an axial current with a non-anticommuting γ5 [LC,Czakon 21]

The anomalous Ward-Takahashi identity:

qµ Γµ
5,s(p′,p) = −as nf TF Λ(p′,p) + γ5 Ŝ−1(p) + Ŝ−1(p′) γ5 ,

= + +

qµ

[Jµ
5,s]R

q

asnfTF [FF̃ ]R

p′

p

p′

p

γ5 p p′ γ5

q q

q can not be 0 to have a non-zero anomaly

Either p or p′ should be 0 to reduce to the propagator-type integrals

γ5 on the RHS does not require any renormalization!
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Zms5 up to O(a5s) from 4-loop calculations

The anomalous dimension of the
[Jµ5 ]R:

γs ≡ d lnZs
d lnµ2 =

d lnZmss
d lnµ2 +

d lnZfs
d lnµ2

= γmss + β
d lnZfs
d lnas − ϵ

d lnZfs
d lnas .

Zms5 at O(a5s) using ABJ equation with ZFF̃ = Zas [LC, Czakon 22]

γmss = as nf TF γFJ − β d lnZfs
d ln as .

▶ γmss at O(a5s ) requires only γFJ and Zfs up to 4-loop (from AWTI) [LC, Czakon 21, 22]

▶ Zf5 at O(a5s ) not known yet
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The non-Abelian Adler-Bardeen theorem

The equality verified to 4-loop in QCD [Ahmed,LC,Czakon 21]:

ZFF̃ = Zas
The ABJ equation in QCD in terms of the bare fields:(ZJ − nf TF as ZFJ)[∂µJµ5 ]B = âs nf TF

[FF̃]B
In an Abelian theory with Pauli-Villar regularization (with an AC γ5),
the coefficient is 1 to all orders [Adler 69; Adler, Bardeen 69]

The coefficient is not 1 with a NAC γ5 in DR in QCD,
but the LHS current remains RG-invariant (albeit in D=4 limit):

γFF̃ = −µ2 d ln as
dµ2 = −β , γs|ϵ=0 = nf TF as γFJ .

An all-order argument of the non-Abelian extension was sketched [Breitenlohner, Maison, Stelle 84];
A proof is completed only recently [Lüscher, Weisz 21]

However, ZJ = Zf5 Zms5 needs to be computed order by order ...

Zf5 at O(a3s ) from 4-loop VVA-amplitude [Ahmed,LC,Czakon 21]
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A Simplified Recipe Valid for SM @ one-loop

Up to one-loop in SM:

γ5 open fermion chain:
pulled outside to spinors

Even γ5 on closed fermion chain:
anticommute and γ25 = 1̂.

Odd γ5 on closed fermion chain:
apply γ25 = 1̂ first and replace the
remaining single γ5-vertex
(pseudo-scalar or axial-current)
as in HV/BM/Larin scheme

Absence of divergent γ5-odd fermion-one-loop in
SM → averaging or not is irrelevant in 4
dimensions

32



Differences compared to the original Kreimer scheme

1 The scope of this AC-γ5 prescription shall be limited to just the non-anomalous
amplitudes (if one would like to maintain the most celebrated feature of no
requiring additional counter-terms); the anomalous axial-current matrix elements
still requires counter-terms in this scheme.

2 An explicit (fool-proof) algorithmic procedure involving only the notion of the
standard cyclic trace with a constructively defined γ5, straightforward to be
implemented in public computer-algebra tools (No reference to the fancy notion of
“non-cyclic trace”).

3 We refined the meaning of the (external) “axial vertex” on the closed fermion chain
for which the Max1PIopenVFF shall be searched in the general scenarios, as well
as the averaging prescription in an algorithmic procedure to reach an
unambiguous definition of the trace for an arbitrary Feynman diagram in SM.

4 Our preferred non-4-dimensional treatment of the Levi-Civita tensor shall be
applicable (for computing physical observables) in SM up to 3-loop order without
any problem.

5 Discussions on how to proceed in the cases of loop diagrams on cuts with
intermediate IR divergences present in individual cut diagrams (possibly computed
separately and independently), to avoid the introduction of spurious pieces in the
final combined results.
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