LumiCal with the race-track beampipe

MDI workshop南华 2023.04.01, detector issues

Suen Hou 侯書雲 中央研究院 Acadmia Sinica suen@sinica.edu.tw

2023.04.12 ECAL https://indico.ihep.ac.cn/event/19442

Luminosity by Bhabha elastic scattering

Physics events, e.g. Z pole,

- $N = \sigma \cdot \int L$ L: Luminosity of e^+e^- collisions
- Luminosity by counting Bhabha events $e^+e^- \rightarrow e^+e^-(\gamma)$ QED theo. precision < 0.1%
 - **1.** a pair of electrons, E(e[±]) = E_{beam} back-to-back
 - 2. precision ϑ of e, $e(\gamma)$
 - 3. within fiducial region

Bhabha luminosity precision

Luminosity= counting Bhabha events In a fiducial θ region

systematic error :

δL/L ~ 2 δθ/θ_{min}

For $\delta L/L = 10^{-3}$

At $z = \pm 1 m$, $\theta_{min} = 20 mRad$ $\rightarrow \delta \vartheta = 10 \mu Rad$ or $dr = 10 \mu m$

Error due to offset on Z

 \rightarrow 0.5 mm on Z or dr = δz x ϑ = 10 µm

Luminosity Error due to

events counted in/out fiducial region \rightarrow spatial resolution = offset on mean of θ_{min}

$$\sigma = \frac{16\pi\alpha^2}{s} \cdot \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2}\right)$$
$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{acc}}{\sigma^{vis}}$$
Bhabha cross section

BHLUMI X-section, racetrack @CEPC

MDI configurations to LumiCal

CEPC Accelerator parameters to LumiCal Bhabha detection

- o beam-crossing: 33 mRad
- IP beam spot @Z: $\sigma_x \sigma_y \sigma_z = 6, 0.035, 2500 \,\mu m$
- Bunch crossing: 23 ns
- per crossing: 3 IP's
- Luminosity: cm⁻²s⁻¹: **2** x **10**³⁶

Beam-pipe materials & Space

- Before Flange: z = 655~700 mm r=10mm, thickness = 1mm @20 mRad traversing = 50 mm, $= 0.14 X_0$ (Be), 0.56 X_0 (Al)
- o Install 2X₀ LYSO = 23 mm
- Luminosity: cm⁻²s⁻¹: **2** x **10**³⁶

Behind bellow: 780~1100 mm

- Flange+Bellow : ~60 mm, 4 X_n
- o Install 20X LYSO 233mm for e[±] energy

LumiCal on Racetrack beampipe

Racetrack beampipe

o beam-pipe r =10 mm, flat y = ± 10 mm
o boost horizontal, e[±] lost into beampipe

LumiCal sandwiched

- |y|>15 mm
- Vertical Si-wafers :

e[±] theta tracking

LYSO calo :
 3x3x50 mm³ bars

M.S. & preshower caused by beampipe

Beam Pipe	2mm beam-pipe, material budget					
possible 1mm Be ??	tanθ= 2mm/L	1/ tanθ	Be X0=353mm	Al X0=89mm	Cu X0=14.4mm	CosQ
	15mRad L= 133 mm	66.66	0.378 X0	1.498 X0	9.259 X0	.9999
	20mRad L= 100 mm	49.99	0.283 X0	1.123 X0	6.944 X0	.9998
Preshower @ z < 1m	25mRad L= 80 mm	39.99	0.227 X0	0.899 X0	5.554 X0	.9997
Backaround to	30mRad L= 67 mm	33.32	0.189 X0	0.749 X0	4.628 X0	.9996
	35mRad L= 57 mm	28.56	0.162 X0 (LEP)	0.642 X0	3.967 X0	.9994
tracker	50mRad L= 40 mm	19.98	0.113 X0	0.449 X0	2.775 X0	.9996
	65mRad L= 31 mm	15.36	0.087 X0	0.345 X0	2.134 X0	.9996
	80mRad L= 25 mm	12.46	0.071 X0	0.280 X0	1.732 X0	.9996

Be 2mm pipe

Al 2mm pipe

Cu 2mm pipe

8

Smeared 100µRad as Multiple scattering

11

LumiCal to 1 µRad precision

IP beam spot 2.5mm spread
 beampipe multiple scattering

1. tracking on IP position

> Beam spot $\sigma_z = 2.5$ mm :

need Bhabha electron tracking

2. Reduce Beampipe material

Low-mass beam-pipe window : less multiple scattering

0.5 mm Be window

Low-mass window <0.07 X₀ (20mR) window: single layer Be slab 0.5mm

Mounting LumiCal on Flange/SC-magnet

LumiCal precision, $1 \mu Rad$ to the IP \Rightarrow survey/monitor: Survey of detector edges w.r.t IP, beampipe center to <1m

- 1. x,y w.r.t BPM position
- 2. add Z position monitor

LumiCal conponents

Before flange, VTXdet volume

Precision electron θ e/ γ identification

- Si tracking layers : $\sigma_r < 5 \mu m$ LYSO array, 2X₀: 2.5x2.5x23 mm³
 - Si wafer + +

SiPM readout *

 $LY50 \quad D = 7.19/cm^{3}$ $X_{0} = 1.14 \text{ Cm}$ $LY50 \quad bav = 2.5 \times 2.5 \times 23 \text{ mm}^{3}$ $Volumo = \sim 100 \times 7.19/cm^{3} = 700 \text{ gm}$

LumiCal volume

Bhabha event pile-up rate @High-Lumi Z

 High-Lumi Z (2021 design) L_{max}/IP = 115 x 10³⁴/cm²s
 Bhabha both e⁺, e⁻ detected, X-sec = 100 nb Event rate = (246x10⁻³³) x (115 x 10³⁴) /sec = 115 kHz
 Event rate / 25 ns bunch crossing = 0.003 events /b.c.
 Pile-up: next b.c., @adjacent cell in peak region Pile-up Fraction = 0.018*6cells/2sides = 0.054

Pile-up event rate = 0.003*0.054 = **1.6 x 10⁻⁴**

c.f. LEP L= 1x10³² X-sec= 100nb Rate= **10 Hz**

50 GeV e- shower in 3x3 mm² cells

event fraction /(cell of 3x3mm²) maximum at beampipe edge = 0.018

Example technology

Tasks toward TDR

GEANT

o new geometry, both sides

o ECAL measurement behind bellow

\circ input BHLUMI events, identify NLO eey final state^{0.2}

o verify 10⁻⁴ systmatics @ lower θ edge,

Detector (still very empty)

O Si-wafer solution ?
O LYSO + SiPM solution ?
O ASICs with pileup flag bunch spacing 23 ns

