Updated full simulation software

Guang Zhao, Shuiting Xin, Shuaiyi Liu, Xu Gao, Linghui Wu <u>zhaog@ihep.ac.cn</u>

> Cluster counting meeting March 30th, 2023

Introduction

- Full simulation package is the foundation of dN/dx PID study
- Major challenges
 - Full simulation with Garfield++ is computational expensive
 - Need more realistic model from the test beam data
- A full simulation package is developed considering the challenges in 2021
 - Fixed momentum track
 - Test beam 2021
- Make extensions and updates to the original packages in order to perform CEPC DC studies and peak finding ML algorithm studies

Full simulation

Ionization process (by Heed)

A sequence of primary interactions (clusters) along the track

The # of clusters can be described by the Poisson distribution

$$P(\overline{N}_p, k) = \frac{\overline{N}_p^k}{k!} e^{-\overline{N}_p}$$

For each cluster, one or more electrons are released

Update: Use Heed to simulate the ionization

Effective models for signal generation

Garfield++ simulation setup

• Geometry and cell size

• Cubic cells with cell size of 1.8 cm x 1.8 cm

• Gas mixture

• 90/10: He/Isobutane

• High voltage

• 1630 volt

Pulse amplitude model

- Strong inhomogeneous field around a thin wire yields
 Polya distributions
- Obtain N_{aval} distribution from Garfield simulation

Pulse amplitude model (cont.)

Pulse time model

- For a fixed electric/magnetic field:
 - *t* is mainly determined by initial position of the electron
- Measure the relationship from Garfield++ simulation

•
$$t(x,y) = Gauss(\mu(x,y),\sigma(x,y))$$

Pulse time model (cont.)

Comparison to Garfield++

Good consistency for track with x = 0.2 cm

Pulse shape model

• Fit the Garfield pulse by:

•
$$f(x|A,t) = \begin{cases} p_0 \times \frac{e^{-p_1(x-p_2)}}{1+e^{-\frac{t-p_3}{p_4}}}, x < t \\ A \times \frac{p_5^{p_6}}{(x-t)^{p_6}+p_5^{p_6}}, x \ge t \end{cases}$$

Model validation

Control the systematic error by the modelling

• Need to be consistent with Garfield++ simulation in an acceptable level

Compare basic distributions

- Ionization distribution
- Single-pulse distribution: amplitude, time
- (Multi-pulse) waveform distribution: charge

Garfield++ setup

- Cell size: 1.8 cm x 1.8 cm
- Gas mixture: He/iC₄H₁₀ (90/10)
- Particle: 20 GeV/c pions

of primary ionizations

Be consistent very well

More ionization plots

Ionization positions

Single-pulse amplitude

Be consistent very well

Single-pulse time

Be consistent very well

More timing plots

Δt from a cluster

More timing plots

Waveform timing

Waveform distribution: charge

Realistic models from beam test data

• Noise model: correct frequency response

- Already done for beam test 2021
- Update for beam test 2022
- Preamplifier response: more realistic pulse shape

Noise Generation

Magnitude in frequency domain

Averaged over 50k noise events

• Test beam data 2022

- Run #: 16, 17, 18
- Sampling rate: 1.5 GHz
- Angle: 45 deg.
- DRS Channel: 5 (1 cm)

Frequency response of the preamplifier

Transfer performance is flat up about 0.9 GHz and then down 40db in less than a decade

(Use gain 1 for beam test 2022 as suggested by Gianluigi)

From Gianluigi's talk. Thanks a lot for providing the information

Possible Bode plot and the transfer function

Responses in time domain

- Have updated the full simulation with effective models. The model is generally consistent well to the Garfield++ simulation
- Have extracted the noise and preamplifier responses from the beam test data 2022
- Next to do:
 - Finalize the simulation code
 - Perform DC study with high statistics
 - Tune simulation with beam test data, and update the machine learning study

Backup

Preamplifier for test beam 2021

from Gianluigi

Single pulse amplitude

