

Science and Technology Facilities Council

TOSCA Secondary Spectrometer Upgrade: Design & Simulations

Adrien Perrichon Molecular Spectroscopy & NMIDG ISIS Neutron and Muon Source

ICANS XXIV, Dongguan, China, 30th Oct. 2023

Outline

Introduction

TOSCA+ design process

- Choice of the assembly
- Parameterised analyser
- Detector system
- Beryllium filter

Performance comparison

Conclusions

Introduction to NVS

Neutron vibrational spectroscopy (NVS)

- Neutron analogue to infrared/Raman
- "Fingerprint" region: 400–1500 cm⁻¹ (50–185 meV), best accessed with indirect-geometry instruments
- Studies of catalysts, hydrogen storage materials, hydrogen bonded systems, advanced materials, biological and organic compounds

Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite

Longfei Lin[®]¹, Alena M. Sheveleva^{1,2}, Ivan da Silva[®]³, Christopher M. A. Parlett^{®4,5,6}, Zhimou Tang⁷, Yueming Liu⁷, Mengtian Fan¹, Xue Han¹, Joseph H. Carter¹, Floriana Tuna¹, Eric J. L. McInnes[®]¹, Yongqiang Cheng⁸, Luke L. Daemen⁸, Svemir Rudić³, Anibal J. Ramirez-Cuesta^{®8}, Chiu C. Tang⁶ and Sihai Yang^{®1*}

Introduction to NVS

Indirect-geometry spectrometers for NVS

Operational instruments

- TOSCA @ISIS, UK
- VISION @ SNS, USA
- LAGRANGE @ILL, France
- NERA @FLNP, Russia

Upcoming instruments & upgrades

- TOSCA+ @ISIS, UK
- VESPA @ESS, Sweden
- IGMVS @CSNS, China
- BJN @FLNP, Russia
- BWAVES @STS, USA

- VISION, https://neutrons.ornl.gov/vision
- Seeger et al., Nucl. Instrum. Methods Phys. Res. A. 604 (2009) 719

LAGRANGE, Jiménez-Ruiz et al., J. Phys.
Conf. Ser. 549 (2014) 012004

NERA, Natkaniec et al., J. Phys.
Conf. Ser. 554 (2014) 012002

TOSCA secondary spectrometer

- 5 forward analyser modules
- 5 backward analyser modules
- 1 sr total analyser coverage

Beryllium filter

Pyrolytic graphite (PG) crystal analyser

Squashed ³He tubes

Introduction to TOSCA

TOSCA primary spectrometer (upgraded in 2017)

Nuclear Inst. and Methods in Physics Research, A 896 (2018) 68-74

The neutron guide upgrade of the TOSCA spectrometer

Roberto S. Pinna ^{a,b}, Svemir Rudić ^{a,*}, Stewart F. Parker ^a, Jeff Armstrong ^a, Matteo Zanetti ^{a,b}, Goran Škoro ^a, Simon P. Waller ^a, Daniel Zacek ^a, Clive A. Smith ^a, Matthew J. Capstick ^a, David J. McPhail ^a, Daniel E. Pooley ^a, Gareth D. Howells ^a, Giuseppe Gorini ^b, Felix Fernandez-Alonso ^{a,c}

a ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK

^b CNISM, Universita' degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

^c Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

NUCLEAR INSTRUMENT & METHODS IN PHYSICS RESEARCH

Check for updates

Introduction to TOSCA

Focusing principles

- Energy-focusing principle
- Time-focusing principle

Final energy (E_2) at detector

Secondary TOF (t_2) at detector

TOSCA+ to replace the entire secondary and achieve

1) At least 10-fold increase in detected intensity

- Increased solid angle, from 1 sr to >6 sr [×6]
- Better detector efficiency, from ~80% to ~90% [×1.1]
- Improved filter transmission, from 50% to >75% [×1.5]

2) Maximise SNR, aiming for 10-fold increase in SNR

Beryllium filter thickness and blade spacing

3) Match or improve the resolution, target of 1.2% of E_i

- Analyser design
- State-of-the-art detectors

Constraints

- Fixed sample position (no modification of the primary)
- Similar footprint
- Analyser lower and upper limits of the azimuthal angle: [27.5, 72]° (to fit diffraction bank, vacuum tube, cryostat)
- Entire secondary flight path in vacuum

Spectral resolution

Nuclear Inst. and Methods in Physics Research, A 1041 (2022) 167401

On the spectral resolution of the broad-band indirect-geometry time-of-flight neutron spectrometer TOSCA

A. Perrichon ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX, United Kingdom Mathematical model of the resolution that accounts for the TOF peak shape and component dimensions, and matches the experimental resolution and McStas simulations

- To get the best possible resolution
 - Design that minimises $V[t_2]$, then minimises $V[L_2]$
- Design that minimises Z_{offset}

Current TOSCA,

Mirrored forward

VISION@SNS

and backward

 $Z_{\text{offset}} \ge 8 \text{ mm},$

given by detector

banks

Assembly: spatial arrangement of analysers, filters and detectors

Back-to-back assembly

Staggered assembly

- Staggered forward and backward banks
- Z_{offset} <3 mm, possibly 0
- Fewer detectors, less Be from horizontal focusing
- More room for Be filter, better SNR

HOPG tiling strategy

Orthogonal tiling (back-to-back)

- Vertically focusing
- Horizontally focusing
- Max 6.6 sr (14 arms)
- Min 1.3% *E*_i

<u>Radial</u> tiling (back-to-back)

- Vertically focusing
- Horizontally flat
- Max 6.1 sr (2 continuous arms)
- Min 0.9% E_i

Orthogonal tiling (staggered)

- Vertically focusing
- Horizontally focusing
- Max 6.3 sr (14 arms)
- Min 1.0% *E*_i

Evaluation of the assemblies: performance, feasibility, cost

Increasing the number of arms

- Improves the resolution (less blur)
- Decreases the solid angle coverage
- Increases the cost

Staggered over back-to-back assembly, at equal solid angle

- Better resolution (lower Z_{offset}, worst blur)
- Better SNR (longer Be filter)
- Significantly cheaper
- Complex geometry

Selected assembly is staggered with 14 arms

- Maximum gain for a resolution of 1% E_i
- Best possible SNR

Staggered 14 arms, double focusing

Ten parameters to fully describe the analyser Tiles located on a 3*d* ellipsoid (6 free parameters) Tiles tilted to face a distant focusing point (2 free parameters) Spatial constraints:

- Polar coverage (45°)
- Azimuthal coverage (27.5-72°)
- Tile dimensions (12-by-12 mm, 2 mm thick)
- Spacing between tiles (0.5 mm)
- Gap to border (6 mm)

Proposed design: Profile at detector

Staggered 7 arms, double focusing (596 tiles)

Gain from solid angle: 6.43 (6.12×1.05) Gain from detector efficiency: 1.10 Total gain: 7.07

Requirements

- Efficiency >90%
- Spatial resolution 5—8 mm
- As thin as possible (z = 0 position)
- Variance in time as low as possible (capture + resolution)
- Technology: <u>High pressure 3He PSD cylindrical tubes</u>

Optimal solution

- PSD tubes with Ø 8 mm and length 25 cm
- 20 tubes in series of 4
- Single row, stacked vertically
- 20 bar pressure, 89% efficiency
- Est. std of 2 μs from capture + 1 μs resolution

 Ongoing characterisation by Davide Raspino, ISIS Detector group

Be filter

- Assembly of beryllium wedges & neutron absorbing blades
- Suppresses high-energy neutrons
- Suppresses stray neutrons
- Transmits analysed neutrons

Current filter

How to simulate the built-in collimation?

<u>Analytically</u>; triangular transmission with 14° divergence cut-off <u>Geometrically</u>; intercept check between blades and neutron trajectories

Design process: Beryllium filter

How to simulate the beryllium itself?

- Isotropic coherent scattering or (energy-dependent) Bragg scattering
- Isotropic incoherent scattering
- Absorption
- Large variations in absolute transmission values depending on the scattering kernel
- Relative variations in transmission similar in all codes

Which spacing to choose for a given Be length?

Iso-transmission relations

Design process: Beryllium filter

Be filter dimensions

Envelope max. dimensions

- Line-of-sight
- Gap between filter and detector
- Adjacent filters
- Image shape and dimensions
- Frame design & engineering requirements

Design based on divergence profile

- Standard radial collimator ✓ Easier to manufacture
- × Shorter path

- Custom radial collimator × Complex to manufacture
- ✓ Maximum path
- × Performance vary with height
- × Challenging to clamp
- × Direct path for parasitic scattering from Al windows

Design process: Beryllium filter

Design based on divergence profile

Proposed design: Profile at detector

Performance of the entire secondary

Gain from solid angle: 6.43 Gain from detector efficiency: 1.10 Gain from filter efficiency: 1.63 (78% transmission) Total gain: 11.52

Average resolution 1.07%

Flexible resolution

- Trade-off gain/resolution using masks in the data reduction
- <1% resolution for high resolution experiments, line width measurements

Energy-dependence of the gain and spectral resolution

- Gain factor 10+
- Overall improvement of the resolution
- Improved SNR

Conclusions

TOSCA+ secondary spectrometer

 <u>Staggered assembly</u> of analyser modules & <u>vertically-collimated Be filters</u> to push the limits in **solid angle coverage** and **SNR** <u>Analyser design to spread "image"</u> on detector to improve energy resolution & allow flexible gain/resolution trade-off in the data reduction

Compared to other NVS instruments

- Best resolution worldwide in standard operation mode, for a large sample (40×40 mm² flat cell)
- Very large solid angle, very high SNR
- Competitive with existing and future instruments

Instrument	Solid angle (sr)	Resolution (% <i>E</i> _i)
TOSCA	1	1.5
IN1 Lagrange	2.5	2-3 (Cu220), 1.5-2 (Cu331)
VISION	3.6	1.5
VESPA	5.3	2.0 (LR), 0.8 (HR)
TOSCA+	6.3	1.1 (0.8)

Acknowledgments

ISIS Design & Instrumentation

Jim Nightingale Lily Galvin Claudio Bovo Davide Raspino

Technology

Dom Duxbury Joel Hodder Simon Canfer

ISIS NMIDG Rob Bewley

ISIS MolSpec Jeff Armstrong Svemir Rudić Stewart F. Parker Victoria García Sakai

Thank you for your attention!