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Diamagnetism, Paramagnetism,
Ferromagnetism 12

MAGNETISNE ET THEORIE DES ELECTRONS:
Par M. P. LANGEVIN.

* P. Langevin, Ann.de Chim. et de
Phys. 5,70 (1905)

— Electronic theory of
diamagnetism

— Kinetic theory of paramagnetism,
explaining Curie law

* P. Weiss, C.R Ac.Sc. 143 | 137
(1906); ). Phys. 6, 666 (1907)

- ‘Molecular
field’ (uniform)

PHYSIQUE. — La variation du ferromagnétisme avec la température.
Note (*) de M. Pierre Wass, présentée par M. J. Violle.

Hpy =nJ — Spontaneous magnetisation
C — Ferromagnets
X =T he — Curie-Weiss law




Negative molecular field
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* L. Neel Ann.de Phys. 17,5 (1932).
A LA FACULTE DES SCIENCES . :
DE L’UNIVERSITE DE STRASBQURG C R Acad. SCI. PaI"IS, 203, 304

(1936)
— Negative local molecular field

= Antiparallel arrangement of
sublattices

= [ransition temperature N

— Magneto-crystalline coupling

— Moments have preferred
it pZ directions
- — Imperfect antiferromagnetism
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Fig. 1. Resolution of a plane lattice into two
sub-lattices.
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Fig. 3. Vanation with temperature of the suxcepubihry
of an antiparallel ar; t of




Negative molecular field

1905 1932 1938 1949

1906 1933 1941
1907

* L.D. Landau, Phys. Z. Sowjet 4, 6/5

. F
¢ OAF (1933).
: — Layered material
. — Positive interactions within layer,

negative between

1 1 1 & 1 1
F=;(a—- A)l2+—4-bl‘+—2—oc(l;+l§)+—§(a+ A)mz+72-a(m§+m§)

1 1
+-;bmglz+b(m-l)"+zbm‘—(H-m).

Landau objected to Neel's model - it wasn't an eigenstate and would be
destroyed by spin fluctuations. Also, he probably didn't like unconstrained
mean field models that looked like back on an envelope calculations...



Antiferromagnetic order

1949
1951

PHYSICAL REVIEW VOLUME 83, NUMBER 2 JULY 15, 1951

Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances

C. G. Suurr, W. A. Stravser, AND E. 0. Wortan
Oak Ridge National Laboratory, Oak Ridge, Tennessee
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* Neel, was asked why he had persisted with his theory of antiferromagnetism in the light of Lev Landau’s
prediction that only ferromagnetism was possible in nature, Néel thanked heaven he was not that smart
or ‘Sancta Simplicitas'.




Magnetic structure determination
and analysis - Software
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Foundations - pillars

Mn ATOMS IN MnO

1927 Wigner, Heisenberg, Hunds, Heitler -
exchange coupling

1936 Wigner - Antiunitary symmetry

1937 Landau, Dzyaloshinski - Phase
transitions

1953,55,57, - Shubnikov, Zamorzaev
Belov - B+W groups

1958, Dzyaloshinski, 1960 Moriya,

1959 Villain and Kaplan eigenvectors and
positive eigenvalues - minimum energy spin
arrangement

1962 Bertaut - Exchange interactions and
Hamiltonians

1963 Dimmock - Group theory of phase
transitions

| 966 Brinkman and Elliot spin space
groups

| 968 Bertaut - Representation theory
1979 Izyumov - Exchange multiplets

1981 Jaric; 1984 Stokes and Hatch Isotropy
subgroups

2001 Sikora - Quadrupoles

7



Foundations - pillars

There is a lot of history. It can create confusion
and inconsistencies. ..

1927 Wigner, Heisenberg, Hunds, Heitler -
exchange coupling
1936 Wigner - Antiunitary symmetry

1937 Landau, Dzyaloshinski - Phase
transitions

1953,55,57, - Shubnikov, Zamorzaev
Belov - B+W groups

1958, Dzyaloshinski, 1960 Moriya,

1959 Villain and Kaplan eigenvectors and
positive eigenvalues - minimum energy spin
arrangement

1962 Bertaut - Exchange interactions and
Hamiltonians

1963 Dimmock - Group theory of phase
transitions

| 966 Brinkman and Elliot spin space
groups

| 968 Bertaut - Representation theory
1979 Izyumov - Exchange multiplets

1981 Jaric; 1984 Stokes and Hatch Isotropy
subgroups
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Refining magnetic structures and symmetry analysis

Start with ‘what are they?’
* ‘Original' SARAh - Representational Analysis (1999)

History - refinements using manually defined magnetic space groups (GSAS, FullProf) or one
of several structure definitions (FullProf), e.g. helical structure. Quite specialist. Lots of
mistakes, particularly over what a k-vector is..

Performed calculations of representational analysis (Bertaut's method) using the tables of
Kovalev to give irreducible representations (IRs) and basis vectors (BVs)

SARAh-Refine was a front-end (meta-program) that took the BVs from SARAh, substituted
related moments into the GSAS exp file, ran GENLES, read the results and carried out
simulated annealing (reverse-Monte Carlo). Moved refinement from moment components
to basis vectors and mixing coefficients - direct basis vector refinement

M, My, M} — 11j = Zu,kz Cy _Z{:,y o Butlityy

SARAh = Simulated Annealing and Representational Analysis (works for commensurate and
single-k incommensurate structures)

FullProf then introduced mixing coefficient refinement and SARAh-Refine was extended to

work with Fullprof and TOPAS by making template for the magnetic phases and editing the
refinement files. .



Refining magnetic structures, symmetry
analysis of magnetic structures

* web SARAh (2018)

* Move from Windows-based codes to web code with calculations carried out in Wolfram
Mathematica. Functionality independent of operating system, users do not need licences.

* Performs the same calculations as original SARAh - Representational Analysis (following
Bertaut's method) to give Irreducible Representations (IRs) and basis vectors (BVs)

* Extended to include (amongst other things)

* Stationary vectors (analogous to ‘isotropy groups’, of Javic and the Isotropy suite)
but using the Black+White point groups rather than magnetic space groups

* These define high-symmetry structures within the space of an IR
* TJreat commensurate and incommensurate structures as the same

* Exchange Multiplets (Izyumov) to connect IRs with isotropic spin and exchange
symmetry

* webSARAh Refine (2022)

» Works with FullProf. Makes magnetic phases, edits .pcr file directly for easy selection
and refinement of BVs (using B+W stationary groups and exchange multiplets)



SARAhA- Refine Flow chart

Table 1
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Symmetry analysis and refining magnetic
structures
Now move to ‘why this one?’

* Current developments - moving beyond the mechanics of describing magnetic structures and
helping create understanding of the physical reasons for a magnetic structure to form. See this
as key to control or properties and intelligent design)

Introduce anti-unitary symmetry (VWigner) which brings in complex conjugation and
time-reversal in a complete way

Calculations of invariant polynomials to enable better understanding of energy drives for
a given magnetic structure, also to reduce confusion over Landau theory...

Quadrupoles - tensor analysis and useful for orbital ordering

‘Serapsis’ - another view of the relationships between representation theory, and
magnetic space groups and spin groups

Making coherent use of the various theories to maximise the information that we have and
use when we analyse magnetic structures - a philosophy and an educational-piece

11



Broadening the
foundations SARAh

History can make confusions and be daunting. ..

1927 Wigner, Heisenberg, Hunds, Heitler -
exchange coupling

1936 Wigner - Antiunitary symmetry
1937 Landau, Dzyaloshinski - Phase
transitions

1953,55,57, - Shubnikov, Zamorzaev
Belov - B+W groups

1958, Dzyaloshinski, 1960 Moriya,

1959 Villain and Kaplan eigenvectors and
positive eigenvalues - minimum energy spin
arrangement

1962 Bertaut - Exchange interactions and
Hamiltonians

1963 Dimmock - Group theory of phase
transitions

| 966 Brinkman and Elliot spin space
groups

| 968 Bertaut - Representation theory
1979 lzyumov - Exchange multiplets

1981 Jaric; 1984 Stokes and Hatch
Isotropy subgroups

2001 Sikora - Quadrupoles 12



Broadening the
foundations SARAh

Try to make an easier path. ..

1927 Wigner, Heisenberg, Hunds, Heitler -
exchange coupling

1936 Wigner - Antiunitary symmetry
1937 Landau, Dzyaloshinski - Phase
transitions

1953, 55,57, - Shubnikov, Zamorzaev
Belov - B+W groups
1958, Dzyaloshinski, 1960 Moriya,

1959 Villain and Kaplan eigenvectors and
positive eigenvalues - minimum energy spin
arrangement

1962 Bertaut - Exchange interactions and
Hamiltonians

1963 Dimmock - Group theory of phase
transitions

| 966 Brinkman and Elliot spin space
groups

| 968 Bertaut - Representation theory
1979 lzyumov - Exchange multiplets

1981 Jaric; 1984 Stokes and Hatch
Isotropy subgroups

2001 Sikora - Quadrupoles 12



Add what you need, when you need it ...
- My building-up principle for magnetic structures

Ockham’s razor

* pluralitas non est ponenda sine necessitate
» (“plurality should not be posited without necessity”)
» (“don't use variables unless you need to")

» (“don't make your refinement any harder than you need to")

Theories help you work out what the necessity is
* Think about why!
* There lies the fun...

* There lies the physics

13



Symmetry analysis and refining magnetic
structures

Epilogue

* Landau was not entirely wrong in his view that antiferromagnetic states were unstable with
respect to quantum fluctuations. This notion was continued by the nobel prize winning
physics Phil Anderson in 1973. He was exploring how Neel order could be destabilised by
quantum fluctuations. This was a route to a new type of magnetic ground state called the
Resonating Valence Bond (RVB) state, that was defined by fluctuations and topology rather
than static order and local symmetry.

* Anderson proposed that the RVB could be favoured by frustration and would underlie the
transition to high temperature superconductivity in the cuprates.

» landau’s ideas would later point to an entirely new direction in condensed matter science
and a new class of electronic state called quantum spin liquids and started the search for
example materials. Most notably studies of S=1/2 kagome antiferromagnets ...

14



S =2 kagome antiferromagnets
Madeleine Georgopoulou (UCL, ILL) and Bjorn Fak (ILL)

Claringbullite: Cu,(OD)FCI

» AA stacking of kagome planes
o P63/mmc at high temperature

e Pnma at low temperature

e USR:antisite disorder is an order of
magnitude lower than in herbertsmithite

* Magnetic order T<|/ K

* Goal - use exchange interactions to
understand the Hamiltonian of the Zn-
doped material, ZnCuz(OD)eFCl which

we believe to be an candidate quantum

spin liquid

15



Cu,(OD)¢FCI: Magnetic structure from neutron
diffraction and exchange model

D20 @ ILL
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- Magnetic space group: Pn‘'m‘a
- k= 0, Irrep I'; (Kovalev’s notation)
- 3 Cu sites with different sized ordered

moments. Complex canting!

M. Georgopoulou, et al., Phys. Rev. B 107, 024416 (2023).
K. Tustain, et al., Chem. Mater. 33, 9638 (2021).

Cu
site

Cul
Cu2
Cu3

Claringbullite I,
Moment AFM out-of- FM in-plane

size (ug) plane canting
canting
0.3 0
0.4 18
0.5 0 17
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Cu,(OD)¢FCI: Magnetic structure from neutron
diffraction and exchange model

Cu
site
- Magnetic space group: Pn‘'m‘a
- k= 0, Irrep I'; (Kovalev’s notation)
- 3 Cu sites with different sized ordered Cul
moments. Complex canting! Cu2
Cu3

M. Georgopoulou, et al., Phys. Rev. B 107, 024416 (2023).
K. Tustain, et al., Chem. Mater. 33, 9638 (2021).

Claringbullite I,
Moment AFM out-of- FM in-plane

size (ug) plane canting
canting
0.3 0
0.4 18
0.5 0 17
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Cu,(OD)¢FCI: Spin waves using data from
PANTHER and INS @ ILL

7T=1.8 - 100 K T=1.6 K, E;= 3.55 & 5.11 meV
E;=19.2 meV Q=0.73 A-1, Bandwidth = 2.77 meV,
Q=1.25 A-1 , Bandwidth = 8.3 meV, Zero-energy gap = 0.45 meV.
— . = S g 1.2
E 020 = E o 2
= O = <
z 0.15 i 3 08 3
£ 0.10 %Z = 0.6 =
= = 5 04 g
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* Two magnetic responses gapped from each other
» (Gapless excitations

M. Georgopoulou, B. Fak, D. Boldrin and A.S. Wills, (2021). doi:10.5291/ILL-DATA.INTER-516
M. Georgopoulou, B. Fak, D. Boldrin, J. Ollivier and A.S. Wills, (2021). doi:10.5291/ILL-DATA.INTER-519
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https://dx.doi.org/10.5291/ILL-DATA.INTER-516
https://dx.doi.org/10.5291/ILL-DATA.INTER-519

Cu,(OD)cFCI: Modelling spin waves in SpinW

Results

e Starting point: DFT and tenth-order high-temperature series
expansion!

- 4 exchanges: did not stabilise the experimental
N o J
agnetic structure (no go in SpinW) C

e C(Claringbullite, this work

- "Serendipity’: new protocol for determining exchanges Jl
that stabilise observed magnetic structure?

Antiferromagnetic kagome + interplanar exchanges

Ferromagnetic ‘tripod’ exchanges

- DM=10%] Signs agree with
Cu-O(D)-Cu

- Oy =-95K(exp.=-136K) super(ex)change
angles.

1 H. O. Jeschke, et al., Phys. Rev. B 92, 094417 (2015).
2 A. S. Wills, Serendipity, unpublished.

Value (meV)
14
-6.5
-3.5
-6
4
0.2
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Model versus experiment

M. Georgopoulou, et al., Phys. Rev. B 107, 024416 (2023).

2 magnetic responses with

appropriate gap sizes.

|0 meV excitation: good

agreement in Q and
bandwidth.

2 meV excitation: two
excitation bands but less
good agreement.

(not necessarily the end,

but a very good start)

Energy Transfer (meV)
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Cu,(OD)cFCI: Modelling spin waves in SpinW
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Cu,(OD)cFCI: Modelling spin waves in SpinW

E,= 19.2 meV E,= 5.11 meV
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Cu,(OD)¢FCI: Modelling spin waves in SpinW
Analysis technique?

* The 4 exchange parameters from literature did not give a stable magnetic structure in SpinW
and could not be used to model the spin wave spectra

* Need something that can handle 8 exchange interactions
* What to do?

» Use eigenvectors?

e Use Monte Carlo?

20



Early ideas - Villain, Lyons and Kaplan,

Diagonalise the Fourier matrix of exchange interactions -
eigenvectors describe the spin configuration of the

ordered state

The problem is that this gives a global phase

Not much information for non-collinear structures
where the the angles between the moments are not

“2mikR,
S (K) =_ZJI:;‘(R1))€ '

simple

Sign sequences of collincar magnetic moments
Structure My My, My M4 Mg, M., M. Myes
| : k=(0,0,0) + . + . . + +
2 : k=(0,0,0) + + + + & + ik +
3 : k=(0,0,0) + + . + a +
4:k=00,0) | + + + +
-} Casc of disordered or incommensurate structures

Tends to be used to make high-level phase diagrams
This cannot be used algebraically for complex matrices

as the eigenvectors will involve complex roots. Use grid
search.

This technique isn't heavily used to understand the
orderings of magnetic structures

-20

20 -15 -0 -5 'oJ 5 10 15 20



Early ideas - Monte Carlo

Generate an initial solution x randomly

)

Generate a candidate solution y randomly
based on current solution x and a specified
neighbourhood structure

g

-(f() - f(x))
-l L)
Generate r in [0, 1) randomly
J/ i r< p?
No
x=y

Stop condition of inner loop is met?

Decrease the temperature t

Stop condition of outer loop is met?

Yes

| Output the solution x |

Follow Bertaut - set up an exchange matrix.
Include Dzyaloshinski and Moriya vectors

Go beyond Bertaut 's theory and use the
exchange matrix to perform symmetry analysis of
the related isotropic exchange Hamiltonian

Monte Carlo- conventional thought may be to

|. Make a large unit cell/set boundary
conditions

2. Take a set of exchange values (vector in the
space of exchange interactions)

3. determine stable magnetic structure by MC
protocol - make changes to spin structure,

4. Repeat to validate solution

Problem - computationally very expensive. |
started from needing to go beyond the literature
models, and the next step looked like an 8
exchange values. Taking 10 trial values for each
exchange energy gives >108 sets of SA runs.
With | hour per run this direction of study
effectively fails... Need another way...

22



Cu,(OD)¢FCI: Modelling spin waves in SpinW
Analysis technique?

* The 4 exchange parameters from literature did not give a stable magnetic structure in SpinW
and could not be used to model the spin wave spectra

* Need something that can handle 8 exchange interactions
* What to do?
» Use eigenvectors! Not enough ‘angular resolution’
* Use Monte Carlo? Too expensive/slow for this problem

* Something more creative? ... Literally focusing on the problem - what stabilises the
experimental structure. ..

23



Cu,(OD)¢FCI: Modelling spin waves in SpinW
Analysis technique?

* The 4 exchange parameters from literature did not give a stable magnetic structure in SpinW
and could not be used to model the spin wave spectra

* Need something that can handle 8 exchange interactions
* What to do?
» Use eigenvectors! Not enough ‘angular resolution’
* Use Monte Carlo? Too expensive/slow for this problem

* Something more creative? ... Literally focusing on the problem - what stabilises the
experimental structure. ..

serendipity | ser(o)n'diprti

noun [mass noun]

the occurrence and development of events by chance in a happy or
beneficial way: a fortunate stroke of serendipity | [count noun] : a series of
small serendipities.

GIN

1754: coined by Horace Walpole, suggested by The Three Princes of
Serendip, the title of a fairy tale in which the heroes ‘were always making
discoveries, by accidents and sagacity, of things they were not in quest
of".
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Serendipity and
finding stability
values

A. S. Wills, Serendipity, unpublished.

. Follow Bertaut's macroscopic theory - set up an exchange

matrix. Include Dzyaloshinski - Moriya vectors

. Follow Weiss. Make random exchange values — 106 ‘energy

vectors’ that follow Weiss temperature’

. Test eigenvectors of energy vectors against experimental

magnetic structure (Bertaut, Kaplan, and Luttinger-Tizsa)

. Calculate mean field at each site and trim energy vectors

with large deviation of moments from mean field direction.

. Make pool of 10> comparison magnetic structures.

Calculate their energies

. Substitute each trial energy vector into energies of the

magnetic structure pool, find lowest energy structure

. Take energy vectors those that stabilise experimental and

close magnetic structures (don't forget those that stabilise
other structures - could help analysis with Al )

. 6 dimensional energy phase is hard to draw. Use cluster

analysis on selected energy vectors to define regions in
exchange space. Define cluster centres

— Run time 6-8 hours (old laptop) with 6 exchange
parameters

. Test energy vectors of cluster centres with SpinW

24



Serendipity and
finding stability
values

experimental structure energy:
-1.51326 Ji+1.51326 Jiot1.00595
J11-0.647744 }1,+0.647744
Ji3+1.71456 J14+1.00595
Jist1.51326 ]16-0.647744
Ji7+0.647744 |1s+0.647744
Jiot1.51326 )+1.09154
}20-0.647744 |21-1.00595
[3-0.647744 |++1.09154
Js+0.647744 J¢-0.42864
J7-0.215296 J5-0.42864 J9-0.21 1584
D, b-1.49846 D.

A. S. Wills, Serendipity, unpublished.
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. Follow Weiss. Make random exchange values — 106 ‘energy

vectors’ that follow Weiss temperature’
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magnetic structure (Bertaut, Kaplan, and Luttinger-Tizsa)

. Calculate mean field at each site and trim energy vectors

with large deviation of moments from mean field direction.

. Make pool of 10> comparison magnetic structures.

Calculate their energies

. Substitute each trial energy vector into energies of the

magnetic structure pool, find lowest energy structure
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close magnetic structures (don't forget those that stabilise
other structures - could help analysis with Al )

. 6 dimensional energy phase is hard to draw. Use cluster

analysis on selected energy vectors to define regions in
exchange space. Define cluster centres

— Run time 6-8 hours (old laptop) with 6 exchange
parameters

. Test energy vectors of cluster centres with SpinW
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Serendipity and
finding stability
values

A. S. Wills, Serendipity, unpublished.

. Follow Bertaut's macroscopic theory - set up an exchange

matrix. Include Dzyaloshinski - Moriya vectors

. Follow Weiss. Make random exchange values — 106 ‘energy

vectors’ that follow Weiss temperature’

. Test eigenvectors of energy vectors against experimental

magnetic structure (Bertaut, Kaplan, and Luttinger-Tizsa)

. Calculate mean field at each site and trim energy vectors

with large deviation of moments from mean field direction.

. Make pool of 10> comparison magnetic structures.

Calculate their energies

. Substitute each trial energy vector into energies of the

magnetic structure pool, find lowest energy structure

. Take energy vectors those that stabilise experimental and

close magnetic structures (don't forget those that stabilise
other structures - could help analysis with Al )

. 6 dimensional energy phase is hard to draw. Use cluster

analysis on selected energy vectors to define regions in
exchange space. Define cluster centres

— Run time 6-8 hours (old laptop) with 6 exchange
parameters

. Test energy vectors of cluster centres with SpinW
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Foundations of
Serendipity
Some background
theories

A. S. Wills, Serendipity, unpublished.

1906 Weiss

1937 Landau, Dzyaloshinski - Phase
transitions

| 936 Wigner - Antiunitary symmetry

1946 Luttinger-Tisza - minimum energy

spin arrangement. 1958, Dzyaloshinski,
1960 Moriya,

1959, 60s Vilain and Kaplan eigenvectors
and positive eigenvalues - minimum energy
spin arrangement

962 Bertaut - Exchange interactions and
Hamiltonians

| 968 Bertaut - Representation theory
1979 Izyumov - Exchange multiplets

1981 Jaric; 1984 Stokes and Hatch Isotropy
subgroups

Serapsis is likely to be helpful with possible
tie in with Landau theory
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Cu,(OD)cFCI: Modelling spin waves in SpinW

e Starting point: DFT and tenth-order high-temperature series
expansion!

- 4 exchanges: did not stabilise the experimental
magnetic structure (no go in SpinW)

e C(Claringbullite, this work

“Serendipity’: new Monte-Carlo based refinement
protocol for determining exchanges that stabilise
observed magnetic structure?

- Antiferromagnetic kagome + interplanar exchanges
- Ferromagnetic ‘tripod’ exchanges

- DM =10%

- 6, =-95K (exp.=-136 K)

Need more test systems!

M. Georgopoulou, et al., Phys. Rev. B 107, 024416 (2023).
A. S. Wills, Serendipity, unpublished.

Value (meV)
14
-6.5
-3.5
-6
4
0.2
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Symmetry analysis, refining magnetic
structures, stability conditions, spin wave
analysis

* My current developments - moving beyond the mechanics of describing magnetic structures
and focussing on creating understanding of the physical reasons for a magnetic structure to

form

* A personal view

Software needs to be based on physical principles (Al development now moves towards
physics-encoded Al)

History often makes inconsistencies and confusion

webSARAh, webSARAh-Refine have a development track to make a clear path through
historical theories and refine the analysis technique of direct basis vector refinement.

Serendipity is a new way to study magnetic stabilities (and help spin wave studies!). It was
built for Claringbullite (a rather hard problem). | am very happy to discuss ideas and learn
more from people that actually understand spin waves

SERAPSIS is (I hope) going to connect symmetry ideas and make clarity
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