Low-energy muons update and future developments

Sohtaro Kanda (神田 聡太郎) / KEK IMSS MSL / kanda@post.kek.jp

Muons and Muonic Atoms

- \circ Muon is 207 times heavier than electron and decays in 2.2 μs of the lifetime.
- Muons are widely applied in materials science as highly-sensitive local magnetometers.

Neutrons and Muons

Muon beamlines

- Charged particle
- Magnets for energy selection
- Decay product measurements

Neutron beamlines

- Neutral particle
- $\circ~$ Moderator for energy selection
- Beam measurements

Time windows

A.D. Hillier et al., "Muon spin spectroscopy", Nat. Rev. Methods Primers 2, 4 (2022).

> Complementary quantum beams

Muon Beams

Surface muons

Decay muons

- Muons from pions stopped at the production target surface
- 4 MeV monochromatic
- \circ 100% polarization
- $\circ~$ Only available for μ^+

- Muons from pion decays in-flight
- Energy tunable
- Polarization depends on kinematics
- $\circ~$ Both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ are available.

Necessity of Low-Energy Muons

Implantation depth

- The surface muon is a bulk probe.
- Low-energy muons are essential to investigate surface and interfaces.

Limitation of the Pulsed Muon

Time resolution

 A pulsed muon beam provide high statistics while fast precession is difficult to observe.

Low Energy Muons

for low-emittance muon beams

- Due to the short lifetime of muons, the slowing down and cooling methods for stable atoms are not applicable.
- $\circ\,$ USM and LEM are promising methods to obtain slow muons.
- USM has high timing resolution because the time origin is redefined by the laser light pulse.

Low Energy Muons at Paul Scherrer Institute

- T. Prokscha, presentation at BRIDGE2023. https://indico.psi.ch/event/14832/
- LEM is currently the only user-accessible low-energy muon facility in the world.

New sample preparation chamber. H. Teuschl et al., J. Phys.: Conf. Ser. 2462, 012050 (2023).

Small sample measurements. X. Ni et al., NIM A 1054, 168399 (2023).

Ultra-Slow Muon Facility at J-PARC MLF MUSE

The Super-Omega surface muon beamline

Ionization laser

Spectrometer at U1A

Muonium emitter

Cyclotron at U1B

Commissioning is in progress. First materials science measurement started in 2023.

Project Timeline at J-PARC MLF MUSE

Surface Muon Beam

Super-Omega, all-solenoids high-flux beam line

- Highest-flux beamline consisting of a large-acceptance capture solenoid [1], a curved solenoid for charge-selection [2], and axialfocusing solenoids with Wien filters [3].
- $\,\circ\,$ The total beam flux is at order of 108 $\mu^+/s.$

[1] K. Nakahara et al., "The super omega muon beamline at J-PARC", NIM A 600 (2009) 132-134.

[2] P. Strasser et al., "Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam", NIM B 317 (2013) 361-364.

[3] Y. Ikedo et al., "Positron separators in Superomega muon beamline at J-PARC", NIM B 317 (2013) 365-368.

Muonium Emitter

Muonium production target

- At the U1 beamline, a Joule-heated tungsten foil and a laserablated silica aerogel disk are used as a muonium emitter.
- Emission mechanism is different; shaking off muonium from hot metal, diffusion and ejection of muonium from insulator.

Ionization Laser

A state-of-the-art VUV laser system

- For efficient muonium ionization, high pulse-energy of Lyman-α light is essential.
- Four-wave mixing in krypton gas generates an intense Lyman- α emission.
- All-solid-state laser system has been developed.

N. Saito et al., "High-efficiency generation of pulsed Lyman- α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture", Optics Express 24, 7566 (2016).

Y. Oishi et al., "All-solid-state laser amplifiers for intense Lyman- α generation", J. Phys.: Conf. Ser. 2462 012026 (2023).

ω2

820 nm

Lyman-α

122 nm

Transport Optics

Slow-muon optics toward the exp. areas

ED+EB

MCP-DLD Beam Monitor

Muon Spin Spectrometer at U1A

Muon spin spectrometer on the high-voltage platform.

The U1A experimental area.

- $\circ~$ High-voltage platform for implantation energy tuning.
- $\circ~$ Helium-flow cryostat for sample cooling down to 4 K.
- $\circ~$ Segmented positron counter with SiPM-readout.

USM Yield Analysis

to obtain the total flux of the beam

TOF spectrum

USM and decay positron yields

- The MCP-DLD measures the position and time of muons and positrons. Ο
- Early four peaks correspond to prompt positrons and degraded muons. Ο
- \circ The USM flux is obtained by counting the number of USM hit per pulse and decay positrons. *These results are obtained at the intermediate focus.

Laser Tuning to maximize the USM yield

- The width of resonance curve is 160 GHz for silica aerogel. The temperature Ο dependence is reasonable, but the width is wider than expectation (80 GHz).
- Muonium velocity from silica aerogel is slower. Ο

Note that the yield cannot be directly compared between targets due to different laser pulse energies and other conditions.

Laser Delay (us)

Laser Beam Profile Monitoring

for efficient and stable USM generation

• Quantitative and statistical analysis tools for laser beam profile monitoring.

Works with T. Umezawa from S. Nakamura's group of Ibaraki University.

Laser Beam Steering

to optimize the overlap of Lyman- α and 355-nm lights

Works with T. Umezawa from S. Nakamura's group of Ibaraki University.

Extractor Tuning

to maximize the USM yield

- Recently, a power supply for the extractor (an electrode for USM initial acceleration) was upgraded for extraction voltage optimization.
- Extraction voltage at the first electrode of the immersion lens can be optimized in terms of yield or time width.
- $\circ~$ Silica aerogel results in the half timing spread compared to tungsten.

Beam Tuning to optimize the transport optics

15

10

7300

7200

7100

7000 **2**4

EB2Avs.EB3A(2023/06/1103:57:29)[MCP@F5A]

24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8

Mag50ACurrent (A)

EQ03UDvs.EQ04UD(2023/06/0905:21:48)[MCP@F3D]

- (a) MB:EB1 scan to find a way to transport 30 keV muons.
 (b) EQ up/down asymmetry scan to compensate beam deflection arising from stray B-fields and y-kick in the EBs.
 (c) EB2A:EB3A scans varying
 - over ED voltages to ensure that the beam goes straight into the area.

Status Monitors

for the beamline and laser system

 Sophisticated beamline monitor implemented using Grafana and EPICS archive appliance.

Specification of the Beams

at the sample position

- The transport optics were optimized to improve the USM profile.
- $\circ~$ The beam width at the μSR -sample position are 4 mm for the horizontal and vertical directions.
- The time width of USM is 2 ns (1σ) , which is approximately 1/20 of a typical pulse beam, allowing for the observation of fast dynamics.

Extraction voltage = 30 kV, platform potential = 27 kV.

First Scientific Measurements

using ultra-slow muons

^{-0,2} 4000 4100 4200 4300 4400 4500

Sample fabrication byThin film sample (cuprate, anti-Preliminary result of the zero-pulsed laser deposition.ferromagnet) mounted on the cryostat.field μ SR measurement.

- As a result of beam commissioning, beam performance suitable for material science studies has been achieved.
- $\circ~$ USM- μSR measurements became feasible and the first scientific measurement campaign has been started.

Works with T. Adachi's group of Sophia University.

Future Developments

Pulsed extraction

Works with P. Strasser and Y.Nagatani

Future Developments

Multi-stage muon cooling

- A solid gas moderator is used to obtain epithermal muons, which are focused by an electrostatic lens before being converted to muonium through a thin foil.
- The spatial overlap between laser beams and muonium improves dramatically.

Future Developments

- \circ $\,$ Muonium production and ionization:
 - Searches for efficient muonium emitter available at a room-temperature.
 - Reflection mirrors for laser beams to improve ionization efficiency (Y. Oishi).
- USM extraction and transportation:
 - Pierce type extraction electrode for smaller beam spot (Y. Nagatani).
 - Machine-learning based autotune for beam transport tailored to the objectives of measurements.
- $\sim \mu SR$ spectrometer:
 - Re-designing of positron detectors to improve the solid angle and the full asymmetry.
 - Additional electromagnets for zero-field correction and transverse fields.
 - Pulse-synchronized stimulation applied to a sample.
 - Faster front-end electronics for better timing resolution (with R. Honda, K.M. Kojima et al.).

Summary

Low energy muons update and future developments

- The deceleration and cooling technology of muon beams will bring breakthroughs in both particle physics experiments and material science.
- At J-PARC MUSE, we have been conducting the commissioning of an ultra-slow muon beam through the laser ionization of thermal muonium.
- The quality of the beam has improved, and research in material science has been started.
- R&D for further advancement is progressing in various ways.