Wide-angle polarization analysis at ISIS: past, present, and future

Gøran Nilsen
ISIS Neutron \& Muon Source
Rutherford Appleton Laboratory Science and Technology Facilities Council

What is a polarized beam?

- Neutrons are $S=1 / 2$ particles, and therefore have a magnetic moment:

Single neutron

Beam of neutrons

$$
P_{z}=\frac{N_{+}^{z}-N_{-}^{z}}{N_{+}^{z}+N_{-}^{z}}
$$

Why polarized neutrons?

Why polarized neutrons?

Science and

- Extra information on cross section components and moment direction:

Component Separation

Spin incoherent Self-correlations

Coherent Self and collective corr.

Arbe et. al., Phys. Rev. Research 2, 022015(R) (2020)

Complex Magnetism

Soh et al., PRB 101, 140411 (2020)

Longitudinal polarization analysis

	Coherent	Spin incoherent	Paramagnetic powder	Magnetic crystal	
Non spin flip	1	$1 / 3$	$\frac{1}{2}\left[1-(\hat{\mathbf{P}} \cdot \hat{\mathbf{Q}})^{2}\right]$	$[\hat{Q} \times M(\mathbf{Q}) \times \hat{Q}]_{\\| \mathbf{P}}$	
Spin flip	0	$2 / 3$	$\frac{1}{2}\left[1+(\hat{\mathbf{P}} \cdot \hat{\mathbf{Q}})^{2}\right]$	$[\hat{Q} \times M(\mathbf{Q}) \times \hat{Q}]_{\perp \mathbf{P}}$	

Longitudinal polarization analysis

	Coherent	Spin incoherent	Paramagnetic powder	Magnetic crystal	
Non spin flip	1	$1 / 3$	$\frac{1}{2}\left[1-(\hat{\mathbf{P}} \cdot \hat{\mathbf{Q}})^{2}\right]$	$[\hat{Q} \times M(\mathbf{Q}) \times \hat{Q}]_{\\| \mathbf{P}}$	
Spin flip	0	$2 / 3$	$\frac{1}{2}\left[1+(\hat{\mathbf{P}} \cdot \hat{\mathbf{Q}})^{2}\right]$	$[\hat{Q} \times M(\mathbf{Q}) \times \hat{Q}]_{\perp \mathbf{P}}$	

How to polarize and analyse neutrons?

- There are three main ways of polarising or analysing a neutron beam: polarising crystals, ${ }^{3} \mathrm{He}$ spin filters, and supermirrors:

Supermirror

$$
n_{ \pm} \propto \sqrt{\rho_{\mathrm{coh}} \mp \rho_{\mathrm{mag}}}
$$

$$
R=\left(\frac{n_{0}-n_{ \pm}}{n_{0}+n_{ \pm}}\right)^{2}
$$

Polarized neutrons at ISIS

Science and
Technology
Facilities Council

- Zoom, Larmor (SANS/SE), LET (DTOF), Offspec, Polref (refl.) IMAT (imaging)

Target Station 1

- Zoom, Larmor (SANS/SE), LET (DTOF), Offspec, Polref (refl.) IMAT (imaging)

Wide-angle polarization analysis at ISIS

Science and Technology

- LET (DTOF), WISH (diffraction), SHERPA (ITOF)

Past: Polarization analysis on LET

The LET spectrometer

Science and
Technology
Facilities Council

$$
\mathrm{E}_{\mathrm{i}} 1-25 \mathrm{meV}
$$

Resolution 1-4 \%

$$
\phi(3 \AA \AA) 3 \times 10^{5} \mathrm{ncm}^{-2} \mathrm{~s}^{-1}
$$

Beam size $2 \times 4 \mathrm{~cm}^{2}$
Detectors ${ }^{3} \mathrm{He}$ PSD

Coverage m st.

"Cathedral" of neutron scattering

Science on LET: 2017

e.g. exotic phases in quantum magnets Schmidiger et. al. PRL 115147201

QENS (20\%)

$Q\left(\AA^{-1}\right)$

e.g. diffusion in ionic conductors

Voneshen et. al. PRL 118145901

Incoherent/coherent separation

- Polarized neutrons allow us to distinguish incoherent (single-particle motions) from coherent (collective and single-particle motions)

	$\sigma_{\text {coh }}($ barn $)$	$\sigma_{\text {inc }}($ barn $)$	
H	1.7583	80.27	dominant incoherent
7 Li	0.619	0.78	
Na	1.66	1.62	
D	5.592	2.05	difficult to distinguish
Cu	7.485	0.55	
O	4.232	0.008	dominant coherent

Instrument layout

路

Nilsen et. al. J. Phys.: Conf. Series 115012019

Implementation: analyzer

Science and
Technology
Facilities Council

$P_{0} \sim 65 \%$

$\mathrm{T}_{1}=100$ hours

Cell change: ~30s

Science and
Technology

Present: LET Science Examples

Science on LET: current

QENS (30\% - 15\% polarized)

Arbe et. al., Phys. Rev. Research 2, 022015(R) (2020)

AstraZeneca

Diffusion in solvent mixtures

K. Edkins

R. Morbidini
R. Edkins K. Nemkovski
T. Seydel

Diffusion in solvent mixtures

- Incoherent and coherent scattering from $\mathrm{D}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$ mixtures: how does mixing affect hydrogen dynamics?

Coherent

Morbidini et. al., arXiv:2310.04320v1 (2023)

Diffusion in solvent mixtures

Science and Technology
Facilities Council

- Incoherent and coherent scattering from $\mathrm{D}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$ mixtures: how does mixing affect hydrogen dynamics?

Morbidini et. al., arXiv:2310.04320v1 (2023)

Diffusion in solvent mixtures

Science and Technology
Facilities Council

- Incoherent and coherent scattering from $\mathrm{D}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$ mixtures: how does mixing affect hydrogen dynamics?

Morbidini et. al., arXiv:2310.04320v1 (2023)

Diffusion in solvent mixtures

Science and Technology

- Incoherent and coherent scattering from $\mathrm{D}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$ mixtures: what about the collective dynamics? Evidence of nanoclusters of EtOH!

Science and
Technology

Na^{+}diffusion in a candidate battery cathode material

Na^{+}diffusion in a battery cathode material

Science and Technology

- Solid solution $\mathrm{NaFe}_{1 / 2} \mathrm{Mn}_{1 / 2} \mathrm{O}_{2}$

Na^{+}diffusion in a battery cathode material

- Solid solution $\mathrm{NaFe}_{1 / 2} \mathrm{Mn}_{1 / 2} \mathrm{O}_{2}$

Separation of magnetic component from uniaxial PA: $\mathrm{Ho}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$

Longitudinal polarization analysis

	Coherent	Spin incoherent	Paramagnetic powder	Magnetic crystal	
Non spin flip	1	$1 / 3$	$\frac{1}{2}\left[1-(\hat{\mathbf{P}} \cdot \hat{\mathbf{Q}})^{2}\right]$	$[\hat{Q} \times M(\mathbf{Q}) \times \hat{Q}]_{\\| \mathbf{P}}$	
Spin flip	0	$2 / 3$	$\frac{1}{2}\left[1+(\hat{\mathbf{P}} \cdot \hat{\mathbf{Q}})^{2}\right]$	$[\hat{Q} \times M(\mathbf{Q}) \times \hat{Q}]_{\perp \mathbf{P}}$	

Longitudinal polarization analysis

XYZ method: paramagnetic powder

Science and
Technology
Facilities Council

Schärpf and Capellmann, PSSA 135, 359 (1993)

Uniaxial PA with a PSD

Science and
Technology

Uniaxial PA with a PSD

z+: experimental separation

- e.g. $\mathrm{Ho}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ ("spin ice") - elastic scattering from LET

z+: experimental separation

Science and
Technology
Facilities Council

G. J. Nilsen et al., Rev. Sci. Instrum. 93 (6), 063902 (2022)

Conclusions and future prospects

- Polarized TOF has shown its potential for QENS (and INS) on a range of systems
- Crucial when looking for weak scattering, complex systems, or coherent QENS
- Technology mature to increase complexity
- z+ shows promise, but limited by statistics and works best at small Q
\rightarrow XYZ polarized diffraction
- Also, need high count rate at high resolution:
\rightarrow Indirect/backscattering

Future: Wide-angle XYZ PA on WISH

WISH diffractometer

Science and Technology

- WISH: large d-spacing neutron diffractometer
- Solid CH_{4} moderator
- Leading instrument:
- $m=3$ double elliptical guide
- 340° in-plane detector coverage
- Optimised for powders, but can measure single crystals
- >50\% magnetic samples

Photo: Max Alexander

Powder

Magnetic

PRM 3, 044401 (2019) Chai et al.Science 368, 1002 (2020)

Single crystal

Complex magnetic order, weak moments, diffuse scattering, large unit cells

XYZ method: paramagnetic powder

Science and
Technology
Facilities Council

Schärpf and Capellmann, PSSA 135, 359 (1993)

WISH: Instrument layout

WISH: Instrument layout

WISH: analyzer

- Use transmission rather than reflection to improve cost, transmission, corrections:

V-cavity

+ fewer channels
- mirror overlap
- sample environment spurions

Z-cavity

+ more flexible collimation
- more channels
- crosstalk?

WISH: analyzer

- Three-channel prototype (Swiss Neutronics AG - Michael Schneider, Peter Böni):

V-cavity

+ fewer channels
- mirror overlap
- sample environment spurions

$r_{\text {in }}=0.215 \mathrm{~m}, r_{\text {out }}=0.475 \mathrm{~m}, m=4.5$ ($\lambda_{\text {min }}=3.14 \AA$ for sample $d=6 \mathrm{~mm}$)

Supermirror prototype

- Prototype tested on Larmor instrument - $p \sim 96 \%$. Full device ($\sim 60^{\circ}$) in production...

Science and
Technology

Future: Simultaneous high resolution and high count rate ZPA on SHERPA

Cold spectrometers at ISIS

- LET (2010)
- Direct geometry TOF
- Polarized mode (2019)
- OSIRIS (1998)
- Indirect geometry TOF
- Analyzer upgrade
- $\operatorname{Si}(111), \Delta E=11 \mu \mathrm{~V}$
- Guide upgrade
- ~5x flux gain

From IRIS to SHERPA

Science and Technology Facilities Council

- IRIS: indirect geometry time-offlight spectrometer
- Part of original instrument suite (1988)
- Workhorse instrument
- $m=1$ curved guide
- $m=2$ focusing nose
- $\mathrm{L}_{1}=36.5 \mathrm{~m}$
- PG(002) analyzer
- Resolution $\Delta E=17.5 \mu \mathrm{eV}$

Carlile and Adams, Physica B 182, 431 (1992)

SHERPA: Primary spectrometer

- Modern double-elliptical supermirror guide (like OSIRIS) \rightarrow Gain $\mathbf{x 1 0}$

Figure: A. Perrichon and F. Demmel

SHERPA: Secondary spectrometer

	$\lambda(\AA)$	$\mu\left({ }^{\circ}\right)$	$\cot \theta$	$d \Omega$	Φ	Gain
IRIS	6.64	0.8	0.0437	0.2	$1 \mathrm{E}+07$	$\mathbf{1}$
SHERPA	6.47	1.5	0.2586	0.6	$1 \mathrm{E}+08$	330

SHERPA: Secondary spectrometer

- Use prismatic effect in secondary spectrometer

R. Bewley, Rev. Sci. Instrum. 90, 075106 (2019)

SHERPA: Secondary spectrometer

- Use prismatic effect in secondary spectrometer

R. Bewley, Rev. Sci. Instrum. 90, 075106 (2019)

SHERPA: Secondary spectrometer

- Polarization analyser: V-cavity or ${ }^{3} \mathrm{He}$ cell?

ISIS Acknowledgements

Science and
Technology
Facilities Council

LET Project

ISIS
Mark Devonport
Ross Stewart
Rob Bewley
David Voneshen
Peter Galsworthy
Davide Raspino
Gino Cassella (Imperial) Jan Kosata (ETHZ) Holly McPhilips (St. And's) Emily McFarlane (Exeter)

Jamie Nutter
Dan Pooley
Jason Chandler
Maksim Schastny
Jon Bones, Josef Lewis...

