

Zaher Salman :: Paul Scherrer Institute

Muon Spin Spectroscopy with Vertex Reconstruction

ICANS XXIV – 30 October 2023

Outline

- Muon Spin Rotation / Relaxation (μSR) technique
 - Current limitations
- Overcoming current µSR limitations
 - Rate limitation
 - Sample size limitation
- Si-Pixel detectors for µSR to break limitations
- Recent results
 - Lateral resolution
 - First μSR with Si-Pixel detectors

What do we use μ SR for?

- Muons are implanted, not scattered, and they interact with the local magnetic fields that they eperience.
- Muons are local magnetic probe. It allows determination of magnetic / superconducting / other volume fraction.
- µSR can be performed at any temperature and/or magnetic field in any sample (solid, liquid or gas).
- Muons are highly sensitive, can detect magnetic fields from moments as small as $10^{-3}-10^{-4} \mu_B$, and magnetic fluctuations in the range 10^5-10^9 Hz.
- The muon can also act as a hydrogen-like isotope, to study energy materials and semiconducting devices.

Production of Muon


```
frame of the pion (assuming m_v = 0)
```

Spin pion = 0

muon has a spin 1/2 and is 100% polarized

(since only left-handed neutrinos exist)

β -Decay of the Muon

 Three-body decay
Distribution of positrons energies
Parity-violation leading to positrons emitted preferentially along spin direction.

The µSR Technique

µSR Spectra

Current Rate of Muon at a Typical µSR Spectrometer at PSI

Rate Limitation on μ SR at PSI

- $1^{st} \mu^+$: there was **no** other μ^+ for at least T_{Gate} in the past
- Single muon detection: only **one** μ^+ and **one** e^+ in observation window ($T_{Gate} \approx 10 \mu s$)
- Second μ⁺ / e⁺ rejection electronically and by rate limitation

Good Event = (data gate) \wedge (1st e⁺) \wedge (no 2nd μ ⁺) \wedge (no 2nd e⁺)

Rate Limitation on μ SR at PSI

Only 40k Muons/s!

Can we use more?

Vertex Reconstruction Scheme

Vertex Reconstruction Scheme

High-voltage monolithic active pixel sensor (HV-MAPS)

Si-Pixel detectors – MuPix11

- Developed by the Mu3e collaboration.
- 180 nm HV-CMOS process
- Fully integrated digital readout
- Can be as thin as 50 micrometers with 80×80 μm^2 pixel size
- Continuous readout without trigger
- Less than 20ns time resolution

Figures and details obtained from to Thomas Rudzky

Lateral Resolution Limited by Scattering due to Inner Detectors

Distance between sample and Si Pixel (mm)

First μ SR Experiment with Si-Pixel Detectors

- We constructed a four layer setup.
- Each layer is made of four MuPix11 chips (thickness 50-100 μm) glued onto a 25μm Kapton foil.

First µSR Experiment with Si-Pixel Detectors

First μ SR Experiment with Si-Pixel Detectors

Sample goes here

How does the data look like?

• The data collected from the layers comes out as a series of events, position and time stamp:

(x_i,y_i,t_i) and of course the layer (z_i)

• Allowed tracks **must be** coincidence events in layers (**1&2**) or (**3&4**).

Proposed Algorithm to Extract μ SR Spectra

- Any track starting in Layer 1 within a radius of 2 mm from the beam center is a muon.
- Extrapolate this track to the sample position (x_s,y_s).
- Open a (software) data gate of 13 µs
- Within this time, look for tracks (extrapolated to sample - x_s,y_s) starting within 1mm from (x_s,y_s).
- There should be only one such track, if so, it is the emitted positron. If not ignore and move on...

Does this actually work?

First Example – Can we resolve geometric details?

First Example – Can we resolve sample details?

First Example – Can we resolve sample details?

First Example – Can we resolve sample details?

• For a precession we need a magnetic field... using magnets.

• For a precession we need a magnetic field... using magnets.

• For a precession we need a magnetic field... using magnets.

- Comparison between a standard spectrometer (GPS) and our Si-Pixel spectrometer shows:
 - Same precession frequency and damping, i.e. the same magnetic field and width of field distribution on the sample.
 - Lifetime of muon
 - Si-Pixel has no accidental background

• The larger samples show less «wiggles» due to the large field distribution.

• The larger samples show less «wiggles» due to the large field distribution.

• The larger samples show less «wiggles» due to the large field distribution.

Summary and Conclusions

- We can do μSR using vertex reconstruction schemes
- We can reach at least ~1mm lateral resolution
- Si-Pixel detectors should give a quantum leap in our ability to perform μSR measurements.
- We will be able to measure millimeter sized sample, perform measurements on multiple sample simultaneously and much more...

Thanks to ...

PSI

Thomas Prokscha Hubertus Luetkens Jonas Krieger Lea Caminada (UZH) Hans-Christian Kaestli Tilman Rohe Frank Meier

Heidelberg

Thomas Rudzki (Postdoc) Lukas Mandok (MSc) Heiko Augustin (Postdoc) Andre Schoening

Mainz

Marius Koeppel (PhD)

Thanks

Simulated detector geometry

How well does vertex reconstruction work?

- From (x₀,y₀) and (xᵢ,yᵢ) extrapolate to sample position → (x₅,y₅)
- How far is (x_s,y_s) from the actual landing position of the muon (taken from the "camera").
- Even with a large beam profile we get RMS~0.6 mm with average zero.
- Adding 20µ Kapton adds ~10% to the RMS.

Infinitely sharp beam

Gaussian beam profile with $\sigma_{x,y}\text{=}10\text{mm}$

Veto events

Beam size

What about μ SR measurements

What about the quads?

Infinitely sharp beam

Vertex reconstruction, how far can we go?

Simulation of realistic quads

Simulation of realistic quads

- Passive edge fixed at 90 µm.
- Spacing between the chips varied (0, 50, ..., 250 µm).
- Kapton layer is 20 μm, Si layer is 50 μm.

The effect of the gaps visible with veto

- Beam with $4 \text{mm } \sigma_{x,y}$
- No spacing
- No passive edge

50 µm

2 426

0 µm

100 µm

Beam with 4mm $\sigma_{x,y}$ Passive edge fixed at 90µm

Spacing:

200 µm

What changes as a function of spacing

the gaps but mainly due the veto algorithm. Iction resolution, i.e. RMS of the difference between extrapolated

What if we offset the beam from sample

What if we offset the beam from sample

Solid Angle Calculation

Assuming Si Pixel detectors of 20x20 mm², placed 10 mm from the sample (center):

- The solid angle for each is 1/6
- A solid angle of 1/3 from the Forward/Backward set.
- The outer set should cover the same solid angle, i.e. 40x40 mm², placed 20 mm from the sample.

It is also possible double this by adding a Top/Down set as well, with the exact same geometry of the Forward/Backward

https://vixra.org/abs/2001.0603

Scattering due to Outer/Inner Detectors

10 mm between target and inner set 10 mm between inner and outer set

Muon initial beam cross section [mm]

Muon beam cross section [mm]

Microbeam for Small Samples...

