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● Muon Spin Rotation / Relaxation (µSR) technique

– Current limitations

● Overcoming current µSR limitations

– Rate limitation

– Sample size limitation

● Si-Pixel detectors for µSR to break limitations

● Recent results 

– Lateral resolution

– First µSR with Si-Pixel detectors



What do we use mSR for?

Page 3

● Muons are implanted, not scattered, and they interact with the local magnetic fields that they 
eperience.

● Muons are local magnetic probe. It allows determination of magnetic / superconducting / other 
volume fraction.

●  mSR can be performed at any temperature and/or magnetic field in any sample (solid, liquid or gas).

● Muons are highly sensitive, can detect magnetic fields from moments as small as 10-3–10-4 mB, and 
magnetic fluctuations in the range 105–109 Hz.

● The muon can also act as a hydrogen-like isotope, to study energy materials and semiconducting 
devices.
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Production of Muon

µµ+

Two-body decay   muon has always the energy 4.1 MeV in the reference  
      frame of the pion (assuming mν = 0)

Spin pion = 0   muon has a spin 1/2 and is 100% polarized
(since only left-handed neutrinos exist)

Two-body decay   muon has always the energy 4.1 MeV in the reference  
      frame of the pion (assuming mν = 0)

Spin pion = 0   muon has a spin 1/2 and is 100% polarized
(since only left-handed neutrinos exist)

  p+

S = 0
(26ns)
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 b-Decay of the Muon

µ

e

e+µ+

S=1/2
lifetime 2.2 µs

Three-body decay  Distribution of positrons energies
Weak-decay of muon  Parity-violation leading to positrons emitted

preferentially along spin direction.

Three-body decay  Distribution of positrons energies
Weak-decay of muon  Parity-violation leading to positrons emitted

preferentially along spin direction.



The mSR Technique
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N (t )=Bkg+N0 exp (−t / τμ)[1+a n̂⋅P (t)]

 - direction of detectorn̂



mSR Spectra
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N (t )=Bkg+N0 exp (−t / τμ)[1+a n̂⋅P (t)]
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Current Rate of Muon at a 
Typical mSR Spectrometer at PSI



Rate Limitation on mSR at PSI
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time

1st μ+ 2nd μ+

data gate

1st e+ 2nd e+

TGate≈10µs

• 1st µ+: there was no other µ+ for at least TGate in
the past

• Single muon detection: only one µ+ and one e+ in 
observation window (TGate≈10µs)

• Second µ+ / e+ rejection electronically and
by rate limitation 

Good Event = (data gate) ˄ (1st e+) ˄ (no 2nd µ+) ˄ (no 2nd e+)



Rate Limitation on mSR at PSI
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time

1st μ+ 2nd μ+

data gate

1st e+ 2nd e+

TGate≈10µs

Good Event = (data gate) ˄ (1st e+) ˄ (no 2nd µ+) ˄ (no 2nd e+)

Accepted rate (Racc)
versus

incoming rate (Rµ)

Current rate limit for TGate=10 µs is ~40k m+/s

• 1st µ+: there was no other µ+ for at least TGate in
the past

• Single muon detection: only one µ+ and one e+ in 
observation window (TGate≈10µs)

• Second µ+ / e+ rejection electronically and
by rate limitation 
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Only 40k Muons/s!

Can we use more?



Vertex Reconstruction Scheme
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e+

µ+

µ+

e+



Vertex Reconstruction Scheme
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e+

µ+

µ+

e+

We need detectors that give the position and time of a hit with minimal scattering.

(x1,y1,tm)
(x2,y2,tm)

(x1,y1,te)
(x2,y2,te)



High-voltage monolithic active pixel sensor 
(HV-MAPS)
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Si-Pixel detectors – MuPix11
● Developed by the Mu3e collaboration.
● 180 nm HV-CMOS process
● Fully integrated digital readout
● Can be as thin as 50 micrometers with 80×80 mm2 pixel size
● Continuous readout without trigger
● Less than 20ns time resolution

~20 × 20 mm2

Figures and details obtained from  to Thomas Rudzky



Lateral Resolution Limited by Scattering due to 
Inner Detectors
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µ+

First mSR Experiment with Si-Pixel Detectors

● We constructed a four layer setup.

● Each layer is made of four MuPix11 
chips (thickness 50-100 mm) glued 
onto a 25mm Kapton foil.
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Data 
Connectors

HV

LV



First mSR Experiment with Si-Pixel Detectors
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First mSR Experiment with Si-Pixel Detectors
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Sample goes here



How does the data look like?

● The data collected from the layers 
comes out as a series of events, 
position and time stamp:

(xi,yi,ti) and of course the layer (zi)

● Allowed tracks must be coincidence 
events in layers (1&2) or (3&4). 

 

Layer 1
Z=20 mm

µ+

Layer 1
Z=0 mm

Layer 1
Z=40 mm

Layer 1
Z=60 mm

Page 19



Proposed Algorithm to Extract mSR Spectra

● Any track starting in Layer 1 within a 
radius of 2 mm from the beam center 
is a muon.

● Extrapolate this track to the sample 
position (xs,ys).

● Open a (software) data gate of 13 ms

● Within this time, look for tracks 
(extrapolated to sample - xs,ys) 
starting within 1mm from (xs,ys).

● There should be only one such track, 
if so, it is the emitted positron. If not 
ignore and move on...

 

Layer 1
Z=20 mm

µ+

Layer 1
Z=0 mm

Layer 1
Z=40 mm

Layer 1
Z=60 mm
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Does this actually 
work?



First Example – Can we resolve geometric 
details?
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First Example – Can we resolve sample details?
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Vertex of valid events recorded In 
the  upstream set of detectors

Time (tpositron – tmuon) histogram 



First Example – Can we resolve sample details?
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Vertex matching
0.3 mm

Vertex matching
0.5 mm

Vertex matching
1.0 mm



First Example – Can we resolve sample details?
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Vertex matching
0.3 mm

Vertex matching
0.5 mm

Vertex matching
1.0 mm



Second Example - mSR Precession Signal

● For a precession we need a magnetic 
field… using magnets.
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Second Example - mSR Precession Signal

● For a precession we need a magnetic 
field… using magnets.
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Second Example - mSR Precession Signal

● For a precession we need a magnetic 
field… using magnets.
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Second Example - mSR Precession Signal

Page 29

● Comparison between a standard 
spectrometer (GPS) and our Si-Pixel 
spectrometer shows:

– Same precession frequency and 
damping, i.e. the same magnetic 
field and width of field 
distribution on the sample.

– Lifetime of muon

– Si-Pixel has no accidental 
background



Third Example - mSR Precession Signal, 
Magnetic Imaging

● The larger samples show less 
«wiggles» due to the large field 
distribution.
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Third Example - mSR Precession Signal, 
Magnetic Imaging

● The larger samples show less 
«wiggles» due to the large field 
distribution.
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Third Example - mSR Precession Signal, 
Magnetic Imaging

● The larger samples show less 
«wiggles» due to the large field 
distribution.
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15mm sample

6mm
sample

Third Example - mSR Precession Signal, 
Magnetic Imaging

● The larger samples show less 
«wiggles» due to the large field 
distribution.
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Third Example - mSR Precession Signal, 
Magnetic Imaging
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The magnetic field sensed by 
muons within 1mm diameter 



Page 35

 SPS Meeting 2016
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Summary and Conclusions

● We can do mSR using vertex reconstruction schemes
● We can reach at least ~1mm lateral resolution
● Si-Pixel detectors should give a quantum leap in our ability to perform mSR 

measurements. 
● We will be able to measure millimeter sized sample, perform measurements on 

multiple sample simultaneously and much more...
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Simulated detector geometry

Target/sample, 
10mm diameter

Virtual camera, 
20mm diameter

Outer sides, 
40x40mm2

Inner sides, 
20x20mm2

10mm 10mm
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How well does vertex reconstruction work?

Infinitely sharp beam

Gaussian beam profile 
with σx,y=10mm

(xo,yo) (xi,yi)

● From (xo,yo) and (xi,yi) extrapolate to sample 
position → (xs,ys)

● How far is (xs,ys) from the actual landing position of 
the muon (taken from the “camera”).

● Even with a large beam profile we get  RMS~0.6 mm 
with average zero.

● Adding 20μ Kapton adds ~10% to the RMS.
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Veto events

Infinitely sharp beam
Gaussian beam profile with σx,y=10mm
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Beam size 

Infinitely sharp beam

Gaussian beam profile with σx,y=10mm

On “camera”
On sample with veto
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What about μSR measurements

Infinitely sharp beam

Gaussian beam profile with σx,y=10mm
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What about the quads?

Infinitely sharp beam

d

Deviation between 
vertex and actual hit
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Vertex reconstruction, how far can we go?

Infinitely sharp beam
d

Page 44



Simulation of realistic quads

Active Si

Passive 
edge 

(90μm)

Kapton
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Simulation of realistic quads

● Passive edge fixed at 90 μm.
● Spacing between the chips varied (0, 50, …, 250 μm).
● Kapton layer is 20 μm, Si layer is 50 μm.
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The effect of the gaps visible with veto

● Beam with 4mm σx,y 
● No spacing
● No passive edge

● Beam with 4mm σx,y

● Passive edge fixed at 90μm

● Spacing:
                        0 μm                      50 μm                       100 μm                      200 μm 
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What changes as a function of spacing

● Linear decrease of count-rate as expected due to the gaps but mainly due the veto algorithm.
● There is some degradation in the vertex reconstruction resolution, i.e. RMS of the difference between extrapolated and actual stopping position of the muon. 

(Why different x,y??)
● No change in measured asymmetry etc.
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What if we offset the beam from sample

● Active region with passive edge fixed at 90μm. Spacing between pixels of 100μm.
● Only beam offset diagonally (a,a).

μ
+
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What if we offset the beam from sample

● Active region with passive edge fixed at 90μm. Spacing between pixels of 100μm.
● Beam and Sample offset diagonally (a,a).

μ
+
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Solid Angle Calculation

https://vixra.org/abs/2001.0603

Assuming Si Pixel detectors of 20x20 
mm2, placed 10 mm from the sample 
(center):
● The solid angle for each is 1/6
● A solid angle of 1/3 from the 

Forward/Backward set.
● The outer set should cover the same 

solid angle, i.e. 40x40 mm2, placed 20 
mm from the sample.

It is also possible double this by adding a 
Top/Down set as well, with the exact 
same geometry of the 
Forward/Backward
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Scattering due to Outer/Inner Detectors

10 mm between target and inner set
10 mm between inner and outer set
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Microbeam for Small Samples...
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µ+

Microbeam for 
● Very small samples
● Extreme condition studies, e.g., 
● pressure up to 10 GPa using anvil cells (currently 3GPa).

● Scanning across samples to detect variation and homogeneity  
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