

Development of Sample Environment at CSNS

Haitao Hu

Bao Yuan, Bo Bai, Wanju Luo, Hui Cheng, Fan Ye, Mengjia Dou, Chengyang Wang, Xin Tong* SE, CSNS, IHEP, CAS

2023-11-2

Outlines

- User Service
- Low Temperature & Magnetic field
- High Temperature & High Pressure
- Soft Matter & Control System
- Goals for the next few years

Outlines

- User Service
- Low Temperature & Magnetic field
- High Temperature & High Pressure
- Soft Matter & Control System
- Goals for the next few years

User Service

- More than 25 sets of SE equipment used online
- Temperature range of 0.3K 1600°C, 10GPa pressure, 9T magnetic field and some coupled fields for users
- Not only used in CSNS, but also in other devices' experiments such as ANSTO and CMRR

CCR-06

MAG-01

CPC-01

HOT-03

HOT-04

_	SE list used in the beamlines								
	Main List	Equipment Name	Parameters	Beamline Used					
1	CCR-02		4.2-800K	GPPD					
2	CCR-03	Top-loading Cryostat	1.5-300K	GPPD, MPI					
3	CCR-06		4.2-700K	GPPD, MPI					
4	CCR-04		4.2-300K	GPPD					
5	CCR-05		5-500K	SANS, MPI, 9#BL					
6	CCR-07	Bottom-loading Cryostat	10-500K	SANS					
7	ATC-01	Sample Changer	-30~130°C	SANS					
8	ATC-02	for SANS	25~300°C	SANS					
9	HOT-01		1600 ℃	20#BL					
10) НОТ-02		1000 ℃	GPPD, MPI					
11	I НОТ-03	Furnace	1230°C	SANS					
12	2 НОТ-04		1200°C	MPI					
13	3 MAG-01		9.0T, 0.3-325K	GPPD, MPI					
14	4 MAG-02	Magnet	2T@40mm	MR					
1	5 MAG-03		5.0T, 2-700K	SANS					
16	6 CPC-01		2.0GPa	MPI、ANSTO Pelican					
17	7 CPC-02	Clamp Cell	1.0GPa	ANSTO Pelican					
18	3 CPC-03		0.8GPa	MPI, GPPD					
19	HPC-01	CSNS Cell	5.0GPa	CMRR HPND					
20) GP-01	Gas Cell	20MPa	GPPD, SANS, MPI					
21	l Inserts	Gas Inserts × 4	0.1MPa	SANS, MPI					
22	2 Rheo-01	Rheometer	50nNm~230mNm	SANS, VSANS					

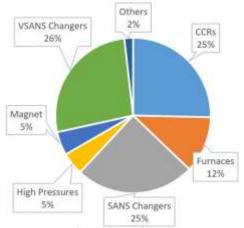
4

Subtotal of services in the past two cycles

SE Service time in the past year							
Code	Equipment name	Beamline	Days	Sample-change times			
CCR-03	CCR-toploading	ling MPI 15 12		12			
CCR-05	CCR-bottomloading	MPI	8	16			
CCR-06	CCR-toploading	GPPD	48	60			
CCK-00	CCK-toploading	MPI	65	90			
CCR-07	CCR-bottomloading	SANS	4	1			
HOT-02	Al Furnace	GPPD	8	10			
HOT-03	SANS Furnace	SANS	22	45			
HOT-04	V Furnace	MPI	35	52			
ATC-01	auto Changer@oil bath	SANS	92	19			
ATC-02	auto Changer@heater rod	SANS	45	17			
ATC-03	auto Changer@diff. T.	VSANS	147	6			
CPC-04	TiZr Cell@CCR06	MPI	8	8			
CPC-04	TiZr Cell@Mag-01	GPPD	6	4			
GI-01@HOT-03	Quartz Gas insert@furnace	SANS	1	2			
GI-02@HOT-04	Quartz Gas insert@furnace	MPI	3	4			
GI-03@HOT-04	V Gas insert@furnace	MPI	1	3			
GP-03@CCR05	Gas Cell@CCR05	MPI	5	10			
GP-03@CCR06	Gas Cell@CCR06	MPI	2	4			
Mag-01	9T Magnet	GPPD	17	20			
Way-01	51 Waynet	MPI	2	3			
Mag-02	5T Magnet	SANS	8	10			
		Total	542	396			

• more stable compared to the

early stages


• 542 days and 396 times

replacements for users

• Temperature related equipment

used by users accounts for 88%.

Classification statistics

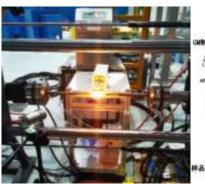
Optimization and Development

• The necessary optimization, research and development work is being carried out. Some examples:

Temperature Jumper for VSANS/SANS



SANS/VSANS Rheometer commissioning



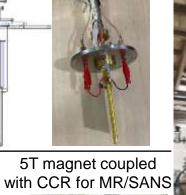
Furnace with lower Furnace with higher Induction heating background & better temperature $\geq 2000^{\circ}C$ furnace for load-frame

performance



scattering

1.5K Cryostat, 4K CCR


in independent R&D

Battery testing

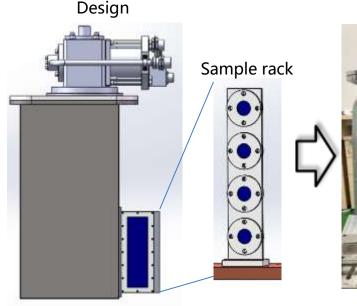
device with CCR

Auto sample changer with 1.5K~500K

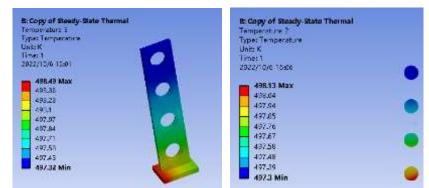
Outlines

- User Service
- Low Temperature & Magnetic field
- High Temperature & High Pressure
- Soft Matter & Control System
- Goals for the next few years

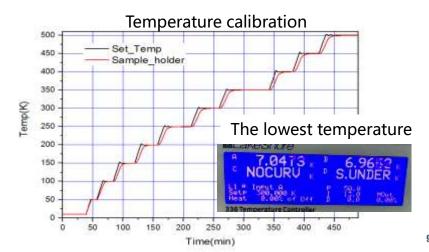
Development and optimization of CCRs


Parameters	2019	Right Now (2023)
Types	only 1, top-loading	3, top-loading, bottom-loading, multi-sample mode
Diameter of sample area	≤ 60mm	≥ 100mm
Temperature range	1.5 ~ 600 K	1.5K ~ 800 K
Window material	aluminum alloy	Al alloy, V, Single crystal sapphire
Types of instrument served	powder diffraction	powder diffraction, inelastic scattering, SANS

CCRs Development - Example 1

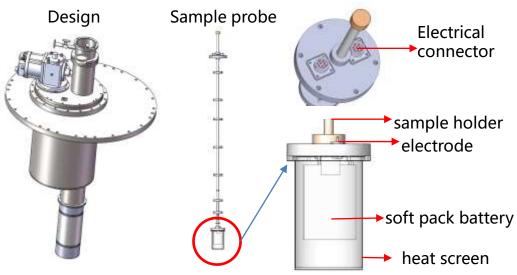

CCR for SANS/VSANS

- Temperature range: 10~500K
- Based on the type of Bottom-Loading structure
- Sample numbers: 4
- combined with the multi-dimensional motion table of SANS/VSANS achieves precise control of sample position.

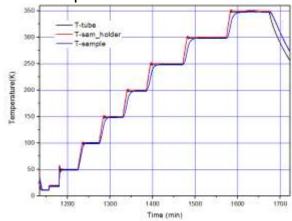


Photo

Temperature simulation: Sample rack, Samples



CCRs Development - Example 2



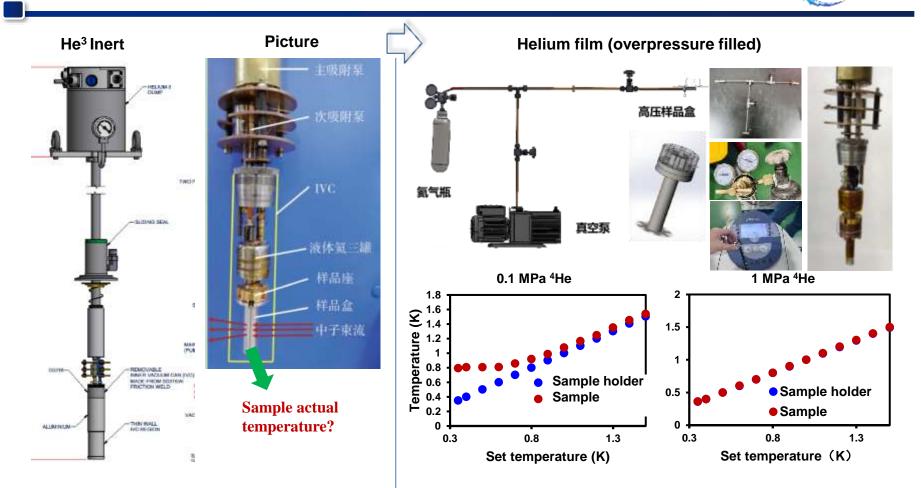
In situ charging/discharging CCR

- Main application areas: battery research
- Temperature range: 5~800K (frequently-used 223~473 K)
- Charging/discharging voltage: 0~5 V, current: 0~5 A
- Ensuring accurate sample temperature:
 - low temperature dual temperature control
 - high temperature multi-layer heat screen
- Replaceable design of neutron beam window

Temperature calibration test

Sample Changer with Low Temperature

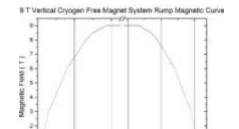
- □ Temperature range: 1.5 K 500 K
- □ Number of samples: 6 (The untested sample is in the room temperature zone)
- Materials for neutron beam windows: TiZr

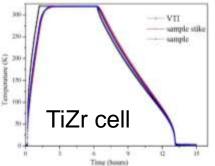


SNS

Temperature Control Optimization of He3 Insert

9 T vertical cryogen free magnet




Property	Value	Droporty	Test value	
Порену	Value	Property	Test value	
Sample access	50 mm diameter	Field range	0 – 9 T	
VTI temperature range	1.5 K - 320 K	Ramp time to	76 mins	
Temperature accuracy	0.2% of set temperature	full field		
Temperature accuracy	0.270 of set temperature	VTI T range	1.5 – 320 K	
Central field range	9.0 Tesla	v 11 1 Talige	1.5 - 520 K	
Nominal operating	al operating 196.6 A		2.5 – 320 K	
current		Ramp time to	7.5 hours	
	0.9% within Ø10mm x	lowest T	/3.5 h (manual)	
Central field uniformity	Central field uniformity 20mm region 2.5% within Ø25mm x 30mm region		2.5 hours	

00 100

Elapsed time (min)

200

Asymmetric superconducting magnet for inelastic scattering SNS

Maximum magnetic field: symmetric mode - 7 T; Asymmetric mode - 5 T; Lowest temperature - 1.5K

我服中平洲轮向服然肉强度分布

对称模式

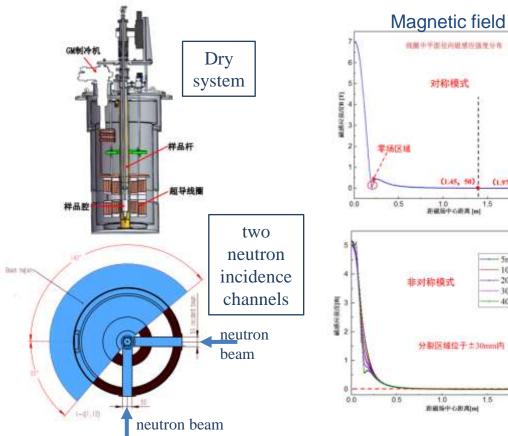
(1.45, 50)

分裂区域位于±30mmP

1.5

1.0

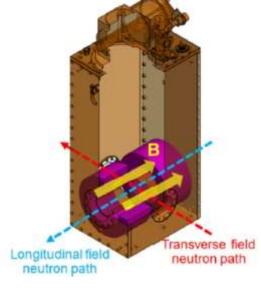
直接站中心距离[m


1.0 距離新中心距离 [m]

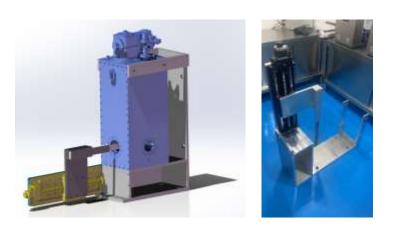
非对称模式

(1.97, 20)

2.0


20

5T Magnet & 2K CCR System

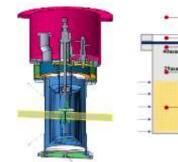

- □ The system contains a 5T SC magnet with room temperature bore and a 2-700 K cryostat, which can be applied in SANS, VSANS and MR neutron instruments.
- □ The 5T magnet can be coped with room temperature sample changer with up to 8 sample slots.
- □ The neutron window of the cryostat can be Aluminum or sapphire.

5T Magnet with RT bore

5T Magnet in SANS

Room Temperature Sample Changer

Outlines


- User Service
- Low Temperature & Magnetic field
- High Temperature & High Pressure
- Soft Matter & Control System
- Goals for the next few years

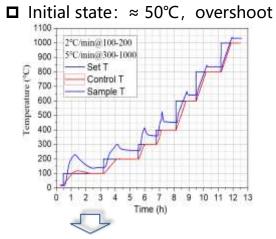
Optimization of the Foil Heating Furnaces

1) Optimization of temperature control performance

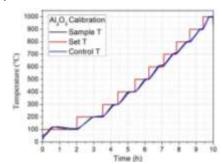
90 120 150 180

Relative position to neutron beam center (mm)

D = 50mm


D = 60mm

210 240


D = 70mm

D = 80mm

✓ Temperature Difference

D optimization: $\leq 5^{\circ}$ C, small overshoot

✓ Increasing the length or diameter of the heating element can broaden the uniform temperature zone of the sample.

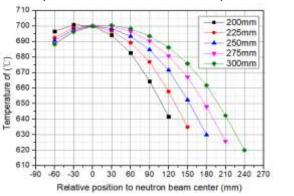
730

720

710

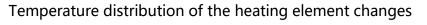
2 700

₽ 670


690

680

660


650

640

Fan Yehua, Bao Yuan hua, Bo Bai bea, Hui Cheng hoe, Shiyan Yang ha, Yufeng Duan ha,

Xin Tong has,"

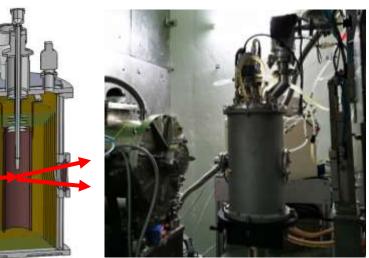
Optimization of the Foil Heating Furnaces

2) Optimization of the structure details

For diffractometer
Neutron window: V, Ti Flange

Water-cooled flange

Furnace body manufacturing

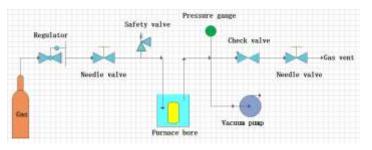


For SANS/VSANS
Neutron window: Single crystal sapphire

Maximum scattering angle: 15°

Neutron

Tested in SANS

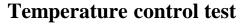


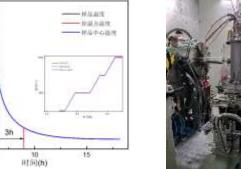
Position calibration:

Gas handling system (GHS) coupling with furnace

2) Optimization of the structure details

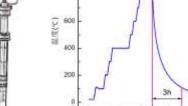
Flow chart of gas handling system


GHS for SANS



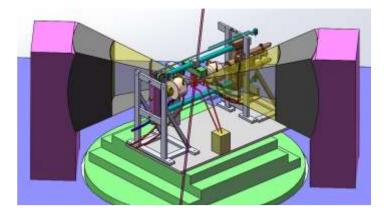
19

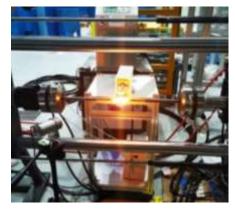
Constitution of gas handling system

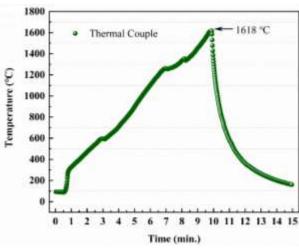


GHS @MPI, ND 1000 °C, PDF 800 °C

GHS @SANS, 1000 °C




800


Inductive Heater for the stress load frame

- □ inductive heater coupled with a stress load frame for EMD
- □ The maximum operating temperature of this heater prototype could reach 1600 °C.
- □ The formal inductive heater is currently undergoing debugging.

Inductive Heating Stress Loading Furnace at EMD

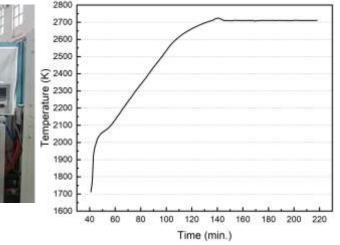
prototype test

Maximum operating temperature exceeds 1600°C

Ultra High Temperature Furnace by Inductive Heating

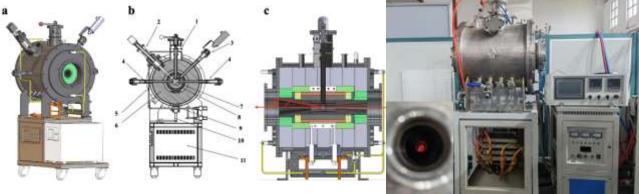
- This furnace is designed for internal temperature determination of materials by means of neutron resonance spectroscopy.
- □ It could be able to perform small angle neutron scattering and neutron imaging experiments in SANS, VSANS, and ERNI at CSNS.
- \square The maximum operating temperature of this device is over 2400 °C.

Hui Cheng, et al. NIMA, 1049, 2023, 168072


Nuclear Inst. and Methods in Physics Research, A

Journal Remepsion investigation constraints when

Pall Length Article


An ultra-high temperature furnace for temperature determination by neutron resonance spectroscopy

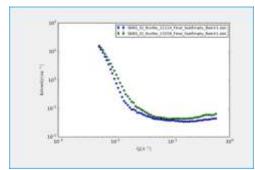
Hai Cheng ¹⁴, Haito Hu^{12,15}, 'Chumming Hu¹⁴, Bao Yuan¹², Bo Bai¹⁴, Bin Zhou¹⁵, Longwei Mei ¹⁴, Wenting Du¹⁵, Yufeng Duan¹, Yan Ye¹⁶, Wanju Luo¹⁶, Zhiqiang Huang ¹⁵, Quan Lin¹⁶, Chundhun Zhang ¹⁶, Xin Tong^{15,16}

Maximum operating temperature

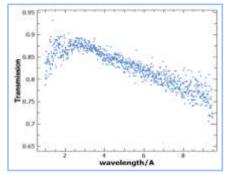
exceeds 2400°C

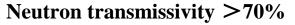
The schematic representation of the inductive heating furnace

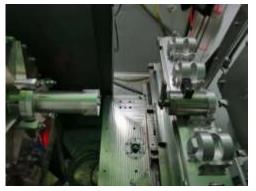
Overlook of the device

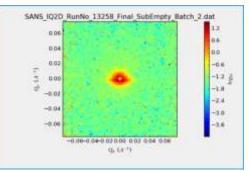

High pressure cell for SANS

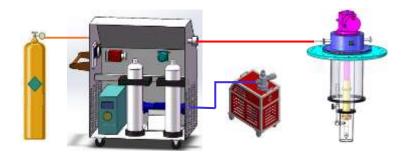
The high pressure cell has been used for shale rock research Pressure limit: 100MPa


SANS HP cell leakage test




Background of empty cell VS air


Sample preparation



In-situ experiment @SANS

Uniform scattering

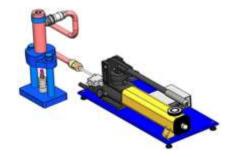
Gas handling system (GHS) coupling with CCR (SNS

GHS + CCR06

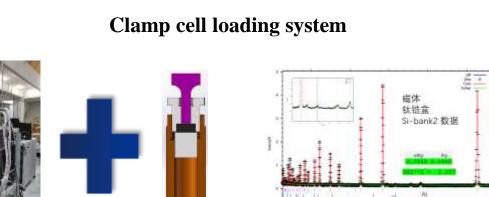
Gas handling system coupling with CCR

Applications:

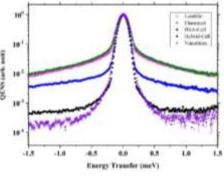
- (1) Metal-Organic Frameworks;
- (2) Methane hydrate;

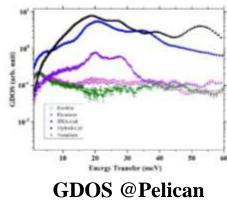

Gas types:

CD4, C2D4, C3D6, C3D8


GHS + CCR05

Clamp cell for diffraction and inelastic scattering





The multi-field coupling extreme conditions have been preliminarily developed, HP+LT+M @ GPPD

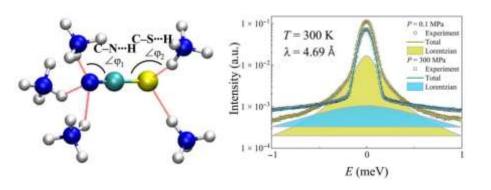
QENS @Pelican

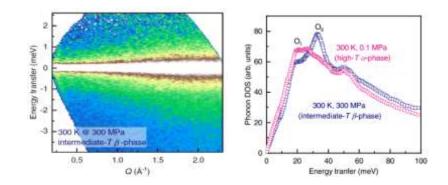
EPJ Web of Conf., 2022

Application of clamp cell in inelastic scattering

SCIENCE ADVANCES | RESEARCH ARTICLE

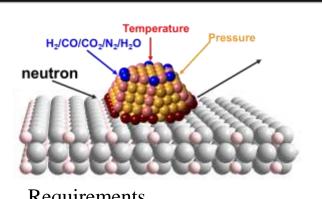
ELECTROCHEMISTRY


Thermal batteries based on inverse barocaloric effects

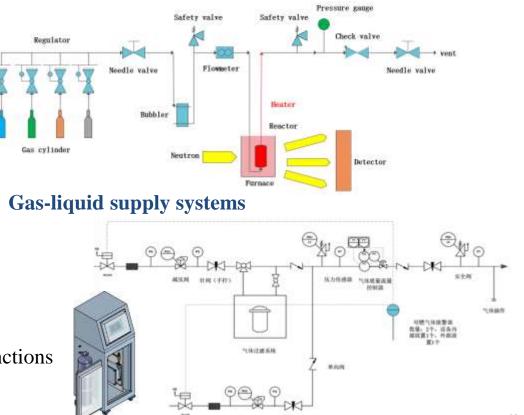

Zhe Zhang^{1,2+}, Kuo Li³⁺, Shangchao Lin^{4+*}, Ruiqi Song¹, Dehong Yu⁵, Yida Wang³, Jingfan Wang⁶, Shogo Kawaguchi⁷, Zhao Zhang^{1,2}, Chenyang Yu^{1,2}, Xiaodong Li⁸, Jie Chen⁹, Lunhua He^{9,10,11}, Richard Mole⁵, Bao Yuan^{8,9}, Qingyong Ren^{8,9}, Kun Qian⁴, Zhuangli Cai⁴, Jingui Yu¹², Mingchao Wang¹³, Changying Zhao⁴, Xin Tong^{8,9}, Zhidong Zhang^{1,2*}, Bing Li^{1,2*}

Ultrasensitive barocaloric material for room-temperature solid-state refrigeration

Qingyong Reno ^{1,2,6}, Ji Qi^{3,4,6}, Dehong Yu⁵, Zhe Zhang^{3,4}, Ruiqi Song³, Wenli Song^{1,2}, Bao Yuan^{1,2}, Tianhao Wang^{1,2}, Weijun Ren³, Zhidong Zhang ^{3,4}, Xin Tong^{1,2} & Bing Li⁶ ^{3,4}

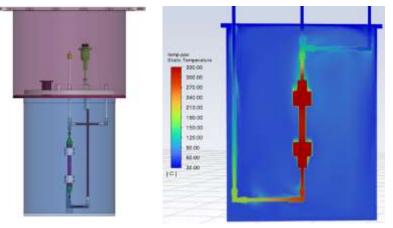


Development of the in situ catalytic SE

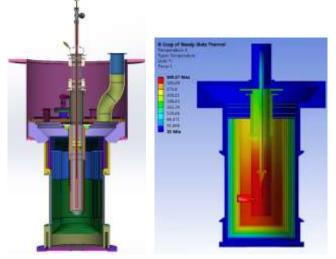

 \checkmark In situ reaction - study the structure and evolution of catalysts

 \succ

Requirements


- high temperature
- high pressure
- reaction atmospheres
- Remote control and data transmission functions for hazardous gas functions

Development of the in situ catalytic SE



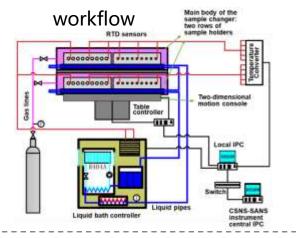
> In-situ catalytic reactor

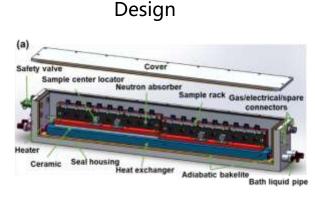
High pressure reactor

- ➢ High pressure, 0.1∼5MPa
- ➢ Temperature, RT~300℃

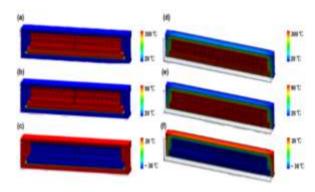
High temperature reactor

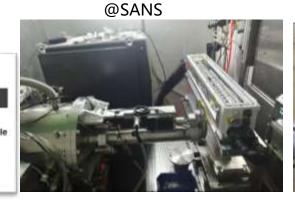
- ➢ High temperature, RT~800°C,
- Pressure, 0.1~0.2MPa.


Outlines



- User Service
- Low Temperature & Magnetic field
- High Temperature & High Pressure
- Soft Matter & Control System
- Goals for the next few years


Sample changer for SANS/VSANS

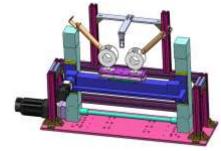


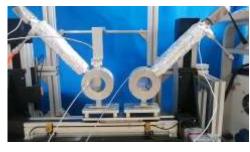
Simulation Analysis

Temperature range: -30~300℃ Sample numbers: 36

@VSANS

T-jump cell for SANS/VSANS




Schematic of T-jump cell system

Picture of the system

T-jump cell at VSANS

Model of T-jump cell

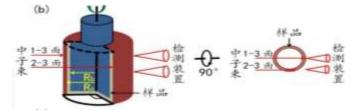
Video of T-jump cell

Main performance parameters

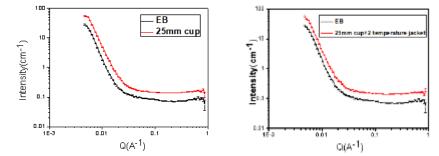
Parameters	Actual test value
Jump temperature difference	>270 °C
Motion switching time	<5 s
Coupling control	Temperature-flow-motion

Rheometer for SANS/VSANS

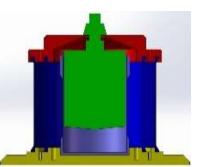
Main performance parameters


Test items	Value
Torque regime	50nNm ~230mNm
Temperature control regime	-40 ~200°C
Angular frequency regime	10 ⁻⁵ rad/s~628 rad/s
Rotation speed regime	10 ⁻⁷ min ⁻¹ ~3000 min ⁻¹

@VSANS

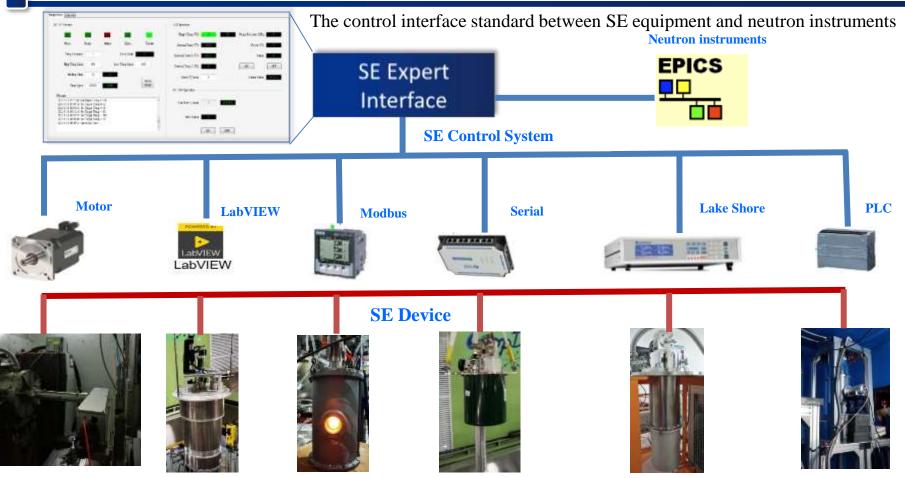


Primary: samples under stress in the 1-3 / 2-3 planes



Scattering intensity from Ti cup and bob @ SANS

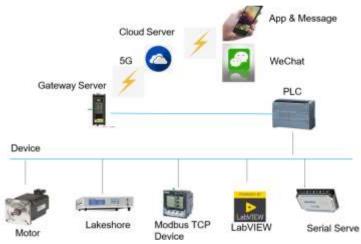
Next optimization


Neutron slit

Better cup

Framework design for the SE control system

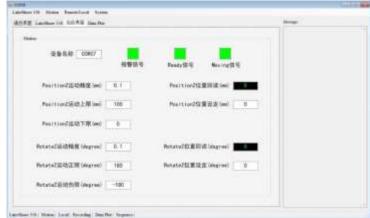
SE Remote Alarm System


- Can monitor the SE on-line equipment parameters by the web page and mobile App;
- ✓ In case of an alarm, it can push notifications by short message or real-time communication software WeChat;

		CSNS	样最好捐助也		
S Richtlinier	iere 🔞	artanat.		C	
			-11. 		
the network the					
Caramangan		ame and a		C average	
				In .	
	1000 0000000000000000000000000000000000				
	Alia Lacore E				

Monitoring through web page

Alarm Notice



Control Program development

nie limite							
AUTO IVER			UMC1200				
			Sender Fill	5	Jac Bar		10.000
Set . But	Alare Barri	Titted	ant (1			10
Tag Arrison 2	Mandah		PC 📰		-		*
the Templant 1 121	(as beglins	-0.1			T and T	1000	(Second)
Integrate and	X0 Factory						
Time Speed	ann fand		Sec.				
	Agen	Mare.	Dirak hap			87-210	
Street Minage	10000	10000	tear 💼		12 M	Deputer	1 million (1
			Tate Same	-		. fee	1.166
					Ant Supplier		
			Testing Dense and			front	100 P

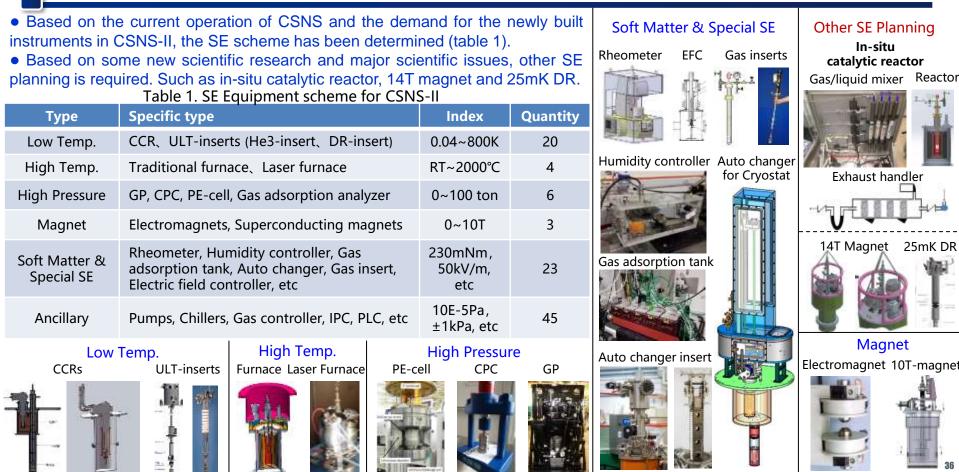
For Furnace (with logical judgment function)

CCR combined with motion control

ore least it leases we have Taxation Con-	aller That Lovel	- Ninner
fagest.	Depader	
Dar See Jan 1	PCS Ner book /dee	. 1993
Are Manchild 10	for Marchi 1998 Acres	
arabetta de	Section 1 1 Design	
Sector With the All		
Assessing 0.00	(hilling line(s)	
Malley Swelly 10	The Specific Street	
Technologia 100	SurgeR()	
TANKED	Saugh Saugh)	
sector man in	after desire and date	Deg 11

Expert interface of 5T superconducting magnet

etan Inne Des Par American	144
marten 2astat	
ACT II Tome	With Opening
	Team Tree (S) 1 Processor (10%)
that Auto Ben April Thrust	land line (%)
Toop Accuracy 1 Alast Cost	Taxed Targ ((C)
RecTraction 40 tow Treation 40	Freed Tony 2 (C)
Roleg Tax (H)	Res (Cont. 1 197
Tankan and Ann	
Nerge	Teste Com
	57-120 Operation
	infortant 1
	Vitte Base 100 100 CEP
F) M.GR. Loal Alexbrand	


For Water bath equipment

Outlines

- User Service
- Low Temperature & Magnetic field
- High Temperature & High Pressure
- Soft Matter & Control System
- Goals for the next few years

SE Plan for CSNS-II and other needs

Summary

- More than 25 sets of SE equipment operated online stably
- □ Provide experimental conditions such as temperature, magnetic field, pressure, softmatter and coupling fields
- □ The collaborative research and development with users on key technologies has progressed continuously.
- Further goal: expand the range of extreme conditions, improving equipment stability, reducing the background of equipment, and more intelligent

Туре	Specific type	Current	Future
Low Temp.	CCRs, ULT-inserts (He3-insert, DR-insert) , etc	0.3 ~ 800K	0.025 ~ 800K
High Temp.	Traditional furnace, Induction furnace, etc	1600°C	≥ 2000°C
High Pressure	GP, CPC, PE-cell, Gas adsorption analyzer, etc	10GPa	10GPa@50K
Magnet	Electromagnets, Superconducting magnets, etc	9T	14T
Soft Matter & Special SE	Rheometer, Auto changer, Gas insert, Electric field controller, etc	50nNm ~ 230mNm, etc	50nNm ~ 230mNm, 50kV/m, etc

Acknowledgement:

CSNS-SE Group, the Neutron Instrument Teams, and the International Society for Sample Environment