

Bertrand Blau:: Head of Operations Group :: Paul Scherrer Institute

The SINQ Solid State Target:

Lessons learned from a Recent Target Failure and the Experience Gained from an Improved Target Design

ICANS XXIV, 1st November 2023, Dongguan, China

Outline

Design of Mark IV Target

Target Incident

- Novel Beam Positioning System
- Neutron Radiography Results of Target Rods

- Cyclotron based CW proton accelerator; max. beam power 1.4 MW
- Proton current: 2.2 mA (2.4 mA 2016)
- Multi-user facility: 1 IP station, 2 meson production targets, 2 spallation neutron sources

SINQ Target Station

SINQ Target Design (Mark IV)

223 Cannelloni target rods: Pb-filled Zr-tubes

double-walled safety shroud (AW-6060)

Pb blanket/reflector

beam entrance window (AW-5754) Page 5

Complete SINQ Performance Statistics

Average annual p-charge 5.07 AhAverage annual operating hours 3'974 hAverage annual availability 94.7%

Symptons of the Incident

23.06.2016, 02:44

- Sharp increase in dose rate measured close to target cooling pipe
- Overfocussed p-beam

25.06.2016, 13:31

- Sharp rise in differential pressure of cooling water across target
 => severe blockage of cooling passage
- p-beam switched off

Disassembly and Visual PIE (May 2017)

Lead Cross Section & Heat Removal

Despite 90% filling in virgin state, tube cross-section appears to be 100% filled after operation

100% lead filling

(FEM/CFD calc. by S. Jollet)

Replacement of 33 Cannelloni rods in «hot zone» by solid Zircaloy rods

⁽CFD calc. by S. Jollet)

Improved Target Design (Mark V) - continued -

better flow distribution

PAUL SCHERRER INSTITUT

Coolant flow optimized

(CFD calc. by S. Jollet)

readjustment of target length

to compensate for the deeper penetration of the proton beam the target was elongated by 38 mm

Improved Target Design (Mark V) - further continued -

Temperature Beam Positioning System (TBPS)

Sensitivity of new Temp. Measurement

Elapsed Time [min]

PAUL SCHERRER INSTITUT

Beam Control with TBPS

example of an off-centered beam

details see poster #157 by J. Welte et al.

- beam position and shape monitored in real time in control room
- center of the beam continuously displayed in a coordinate system
- TBPS is now part of the automatic interlock
 system:
 22 temperatures
 sensors are constantly
 monitored and p-beam
 is automatically
 switched off as soon as
 any sensor's threshold
 is reached

NEURAP at NEUTRA Beamline

neutron radiography of heavily activated specimen (~1 Sv/h)

Neutron Tomography

3D view of Pb-filling (false colours)

frontal view through rod with 75% Pb filling (row 2)

axial view through rod with 75% Pb filling (row 2)

Summary

- first severe premature target failure in 2016 due to cracked Zircaloy tubes and subsequent discharge of liquid lead blocking cooling paths
- several actions were taken to prevent a similar event in the future
 - ✓ replacement of Cannelloni type rods by pure Zircaloy rods in the 'hot zone'
 - ✓ optimized coolant flow (flow concentration in vicinity of middle axis)
 - introducing grids of temperature sensors inside the target for monitoring the position and focus of the incident proton beam
 - implementation of a fast PLC system which triggers automatically a beam interlock as soon as any temperature sensor of the grid exceeds its individual upper limit
- no indication of any cracked target rods since the introduction of the new Mark V targets – so far!
- As part of PIE, neutron radiography and tomography of some target rods were carried out at the NEUTRA beamline at SINQ revealing that a local 100% filling of the Zr-tube cross section cannot be prevented in the 'hot zone'.

=> Massive Zircaloy rods are the better – i.e. safer – choice

Wir schaffen Wissen – heute für morgen

My thanks go to my co-authors

- Sven Jollet
- Pavel Trtik
- Joerg Welte
- David Mannes

Thank you for your attention!

