

New INS spectrometer at FLNP JINR

Frank Laboratory of Neutron Physics International Intergovernmental Organization Joint Institute for Nuclear Research Dubna

ICANS XXIV, 2023, Dongguan, China

PROTON DYNAMICS IN MATERIALS IS A DOMINATING SUBJECT AT THE INSTRUMENTS ON PULSED NEUTRON SOURCES OR STEADY STATE REACTORS WITH "HOT SOURCES"

TOF (pulsed sources)

TOSCA	(ISIS)
VISION	(SNS)

NERA (FLNP)

Crystal (steady state (reactor) sources)

. . .

- FANS (NIST)
 - LAGRANGE (ILL)

historical overview

Reasons: - low luminosity → large samples or long counting time

- limited energy transfer range (impossible to analyze above 100 meV)
- solid angle 0.2 sr

new project

New inelastic neutron scattering spectrometer in inverse geometry

BJN (Bajorek-Janik-Natkaniec)

OPENNING of the PROJECT: January 2021

Authors: Chudoba D. (FLNP JINR)

Goremychkin E. (FLNP JINR) Belushkin A. (FLNP JINR) Klepacka M. (NTNU)

Based on the available space and needed time resolution and energy range the distance between the source and the sample of new spectrometer was chosen equal **105 m**.

The main concept for the secondary spectrometer is to place a set of **HOPG** (higly oriented pyrolytic graphite) analyser plates resembling together **a bell shape**, on both sides of sample.

conceptual design

The scattering angle range from **28 deg** to **80 deg**.

conceptual design

The simulated size of the neutron beam at the detector position is explored for various neutron path lengths within the secondary spectrometer, each corresponding to a specific solid angle.

The dotted line signifies the minimum accepted value of the solid angle.

The number of analyzer plates required to cover the inner surface of the secondary spectrometer construction varies with different values of L2, corresponding to specific solid angles.

The dotted line represents the maximum acceptable number of plates – 2000 ps.

Path length between sample and detector was fixed to **1.1 m**.

Signal to background ratio and time resolution for considered variants of plate size and detector diameter.

Any combination of plate and detector size that yields a signal-to-background ratio **lower than 90%** and a resolution **worse than 7%** is **discarded**.

As a result of this selection process, a **detector with a diameter of 8 cm** and a **plate size of 4x4 cm** were ultimately chosen.

FLnP

Neutron-absorbing boron-carbide layer

Intensity of a neutron beam transmitted through a layer of boron carbide as a function of its thickness.

B4C layer thickness, m

The **optimal thickness** of a natural **B4C layer** for effectively stopping the neutron beam should fall within the range of **0.5 – 1.5 mm**.

4cm x4cm x 1962

B4C

detector mounting systems

5 tubes of He³ detectors for one bell The counter wall thickness is 0.2 mm ³He pressure is 8 atm.

Contributions to the final resolution of the BJN spectrometer

prototype

Intensity at sample 3x3 cm position

PSD monitor at sample position

Type A: tapering

Type B: constant + tapering nose

	NERA	BJN	
Analyzer area	15x3X25 1 125 cm²	4x4x1962 31 392 cm²	28 times greater analyzer area
Energy transfer	Below 100 meV	Up to 300 meV	
Ratio input/output to neutronguides	16x5cm ² /5x5cm ² 3.2	20x20cm ² / 3x3cm ² 44.44	a gain in flux density (without taking into account the higher quality of the neutronguide) 44.44/3.2 = 14
Solid angle	~ 0.2 sr	~ 5.64 sr	Solid angle gain 28
Ratio of luminosity of new spectrometer and NERA			28x14 = 392 times higher i.e. measurements of a sample with the mass of 10-20 mg will be possible.

Thank you for your attention!