

Operating status and recent upgrades of SANS diffractometer at CSNS

Yubin Ke, Chunyong He, Hanqiu Jiang, Hua Yang, Zhenghua Xie

CSNS SANS group Dongguan Campus of IHEP

ICANS-2023

Dongguan, Nov.,1

中國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

Outline

1. Operating status of SANS@CSNS

- 2. In-situ capability and kinetic study
- 3. Recent Upgrades
- 4. Conclusion

Instrument Specifications of SANS@CSNS

- 1st SANS @ pulsed source in China focusing on availability and reliability
- Classical pin-hole geometry with moveable detector (2~4 m)
- Short straight beamline (16 m) enabling wide Q-range and high intensity

1st neutrons Nov, 1, 2017

1st user experiment Oct., 2018

Wavelength-range	1~12 Å	
Q-range	0.005~0.70Å ⁻¹ (S-D: 4m) 0.008~1.40Å ⁻¹ (S-D: 2m)	
Q resolution	~8%@0.1 Å ⁻¹	
Neutron flux @ Sample (100kW)	~6*10 ⁶ n/cm ² /s	
detector resolution	8mm (³ He LPSD)	
Sample size	> 8 mm	

Yubin Ke*, etal, (2018), Neutron News, 29:2,14

Users 'program and outcome

Users' beam time: ~4000h/year

Users' proposals of SANS@CSNS(2 cycles)

Scientific application in soft matters

Molecular structure, phase separation, assembly and aggregation structure

- ✓ Polymers;
- ✓ Micelles ;
- ✓ Sol-gels;
- ✓ Peptides, RNA(medicine), Proteins

SARS-CoV-2 nsp8: stability of protein in salts

Chemical Engineering Journal 450 (2022) 138346

Morphology of molecular assembly and aggregations

different molecular symmetry

different molecular weights

Adv. Mater. 2022, 34, 2108255

Macromol. Rapid Commun. 2022,43, 2200084

multi-layered nanotube

Domino-like structure

[1] Nano Lett. 2021, 21, 24, 10199–10207 [2] Angew. Chem.Int. Ed. 2022, 61, e2022125

Scientific applications in hard matters

Pristine CsPbBr₃@Cs₄PbBr₆

Annealed CsPbBr₃@Cs₄PbBr₄

0.1

1.0 40

g, nm⁻¹

- Morphology of nano-scale cluster, precipitate, crystal, and domain
- **Concentration fluctuation/wave**
- Nano-porous structure

Morphology and orientation of nanoscale pores in shales

Energy & Fuels.34(2020): 7974

Topological magnetic domains in LLPT soft-magnetic BMGs

10 (b) 10

JMST,2024,176:224-235

q (Å-1)

4 31.1.1209C/ab+1909C/18

INCLUMENTALLY CONTRACTOR

-120°C/46+190°C/246

1. Philip Table Dates Table

25

Intensity (a.u.) ² 01 ² 10 ²

1E-3

0.01

O (A)

ACS Nano 2020, 14, 5, 5183-5193

Acta Materialia 233 (2022) 117969

Outline

1. Operating status of SANS@CSNS

2. In-situ capability and kinetic study

- 3. Recent Upgrades
- 4. Conclusion

In-situ sample environment

In-situ kinetic study: Time-resovled SANS technique

X.T.Zhao, **Y.B.Ke***, et al, (under reveiw) S. F. Xie, **Y. B. Ke***, et al, (in preparation)

In-situ heating/cooling

In-situ coupled Stress-temp loading

SANS Methodology: Simultaneous Electro-resistivity

Phase transition of Al alloys during ageing

程的测试平台、

方法及应用,

202310283751.8

Electro-resistivity measurement

.700

600

400

800

800

Rheo-SANS technique

Pluronic F127 (in D₂O)

Heating/shearing-induced phase transition and ordering process

Jun Wang, et al. Study the Phase Behavior of Pluronic and Diblock-polypeptoid by the Rheo-SANS at China Spallation Neutron Source (in preparation)

In-situ Magnetic SANS technique

PDDF and correlation length

> Extraction of Spin-misalignment

 $\frac{d\Sigma_M}{d\Omega}(q) = \frac{8\pi^3}{V} b_H^2[\left|\widetilde{M}_y^2\right|\cos\theta^2 - (\widetilde{M}_y\widetilde{M}_z^* + \widetilde{M}_y^*\widetilde{M}_z)\sin\theta\cos\theta]$

$$C(r) = \frac{1}{8\pi^3} \int_{q=0}^{\infty} q \, \frac{d\Sigma_M}{d\Omega}(q) \exp(iqr) d^3q$$

GISANS technique

Nanostructure probe in thin film and interface

- Deuteration obviously increase the contrast between D/A
- Amorphous acceptor was firstly discovered by GISANS, which is invisible in GISAXS result

GL Cai, Yuhao Li, et al,. *Revealing the 3D Morphology* of Organic Solar Cells via Advanced Neutron Scattering *Techniques*, **Nature Comm.** (under review)

Outline

1. Operating status of SANS@CSNS

2. In-situ capability and kinetic study

3. Progress of recent upgrades

4. Conclusion

SANS upgrade objectives

Upgrade objectives	Before upgrade	After upgrade
Broaden Q-range	0.006~1.4 Å ⁻¹	0.004~1.5 Å ⁻¹
Increase spatial resolution	10 mm	8 mm
Enhance counting-rate	20MHz	200MHz
enlarge sample space	1.2 m*0.5 m	3 m*1m
Load capacity of sample stage	300Kg	2000Kg

key parameter: Q_{min}

$$Q_{\min} = \left(\frac{2\pi}{\lambda L_2}\right) \left(\frac{L_2}{L_1}R_1 + \frac{L_1 + L_2}{L_1}R_2 + \frac{\Delta y_3}{2} + 2A\lambda^2 \left(\frac{\Delta\lambda}{\lambda}\right)\right)$$

Long wavelength: λ (overlap)
Large SD distance: L₂
High spatial resolution: Δy₃

Simulation and Calculation

New geometry: sample@13m; detector@18m

Neutron flux @ sample (1~10Å)

Upgrade Progress: sample space and scattering chamber

Beamline Collimation upgrade

Sandwich structure shielding

50mmB-PE +100mmFe+50mmB-PE

Scraper: sintered B₄C Spacer :B₄C/Fe composite Fe shot+B₄C+PTFE

Upgrade the electronics of Main detector

spatial resolution (< 8mm)

SANS electronic system

- SANS@CSNS has been running five years and applying in a broad research scopes, which has developed wide users community and high-scientific output
- SANS@CSNS has wide-Q range, high intensity and in-situ characterization ability under variant external field. Based on SANS instrument, experimental methodologies have been developed, such as GISANS, Simultaneous Electro-resistivity and DSC measurement.
- An recent upgrade has been conducted which can increase the instrument length and enhance the detector resolution to reach lower Q_{min} .

Acknowledgement

Thanks for the help from ISIS and ANSTO!

Thanks for your attention!