

Research on Neutron/X-ray Noise and Artifact Removal Methods Based on Semantic Aggregation

Jianfang Li, Shenxiang Wang, Fazhi Qi, Jie Chen, Yakang Li

2023/11/01

Contents 01. Background

02. Target

03. Method

04. Experiment and Result

05. Conclusion and Outlook

01 Background

Background

SNS

Background

Sparse-view sampling offer significant benifits for CT scan

- Reduce scanning time and improve experimental efficiency.
- \succ Reduce radiation exposure.
- Less data storage space and data transfer pressure.

X-ray CT sparse-view reconstruction image

Groudtruth

Sparse-view reconstruction imaging quality

- > Striping artifact and radiating artifact.
- \succ Loss fine details and.
- ➢ Low level quality image.

Neutron CT sparse view reconstruction image

Groudtruth

Target

Key post-processing requirements for sparseview CT

- ➢ Keep fine details and features
- Remove striping artifact
- Strong robustness

Deep learning denoising models are dominant

- Blind denoising, fast speed, good effects, strong adaptability
- Tradeoff between denoising and detail preservation,
 - Control denoising strength, collect labelled training data
- More research on low-dose X-ray CT image denoising

(medical imaging), less on neutron CT images

Artifact or not ?

Method

03

Method

- The EMCA blocks explore
 context within the multi-order
 feature maps with channel
 dimension expansion.
- The CMCA blocks explore context within the multi-order feature maps with channel dimension compression.

Characterize of designed MMCA-Net

- Employ multiple stages of multi-order context aggregation to capture contextual semantic relationships at various levels.
- > Integrate four strategies to preserve detail information in the images.

Method

04

Experiment and Results Analysis

X-ray Low-Dose CT Dataset (LDCT Denoise):

- AAPM-Mayo Clinic Low-Dose CT Grand Challenge dataset, 2167 training pairs (CT slices from 9 patients), 211 test pairs (1 patient).
- Quantitative metrics: PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and RSME (Root Mean Square Error).

Sparse-view neutron/X-ray CT image datasets

- > X-ray sparse-view CT dataset: 2048 pairs total, scanned object is metal.
- > Neutron sparse-view CT dataset: 2048 pairs total, scanned object is cultural relic.

X-ray low dose CT image denoise (LDCT denoise)

Methods	$\mathrm{PSNR}\uparrow$	$\mathrm{SSIM}\uparrow$	RMSE↓	Parameters	Running times
LDCT	29.2489 ± 2.1100	0.8759 ± 0.0386	14.2416 ± 3.9523	\	Ν
BM3D(2014) [25]	32.6911 ± 2.0693	0.9046 ± 0.0302	9.5730 ± 2.6503	λ	2.3220s
REDCNN(2017) [11]	32.9012 ± 1.6609	0.9086 ± 0.0283	9.2354 ± 1.9518	$1.8456 \mathrm{M}$	0.0022s
EDCNN(2020) [13]	33.0571 ± 1.8456	0.9146 ± 0.0289	9.1158 ± 2.1848	0.0810M	0.0031s
DUGAN(2021) [18]	32.8442 ± 1.8621	0.9056 ± 0.0278	9.6898 ± 2.3891	\	0.0224s
CTformer(2023) [31]	33.0811 ± 1.7688	0.9119 ± 0.0304	9.6898 ± 2.0549	1.4500M	0.4414s
DEformer(2022) [34]	33.0655 ± 1.8790	0.9151 ± 0.0290	9.1142 ± 2.2290	$0.3547 \mathrm{M}$	0.0713s
ESAU-Net(2023) [52]	33.2593 ± 1.8079	0.9174 ± 0.0284	8.8961 ± 2.0722	4.9140M	0.0207s
MMCA-S(Ours)	33.2649 ± 1.7875	0.9157 ± 0.0294	8.8854 ± 2.0409	0.5710M	0.0216s
MMCA(Ours)	33.4418 ± 1.7997	0.9165 ± 0.0294	8.8095 ± 2.0346	0.9300M	0.0200s

Quantitative comparison results with other advanced methods of recent years

PSNR: 1st place, SSIM: 2st place, RMSE: 1st place.

Parameters:3st place, Average running time:3st place.

X-ray low dose CT image denoising (LDCT denoising)

Full dose CT

Low dose CT

BM3D

REDCNN

EDCNN

DUGAN

CTformer

DEformer Visualization[-160, 240]HU

ESAU-Net

MMCA-Net(Ours)

X-ray sparse-view CT image denoising

> Only trained on x-ray sparse-view CT dataset.

Successfully improve the image quality by removing noise and strip artifacts

X-ray sparse-view CT image denoising

Denoised

Groundtruth

Sparse-view CT

Groundtruth

Sparse-view CT

Denoised

Groundtruth

Sparse-view CT

Denoised

Groundtruth

 \succ the contrast change is not natural.

Some details are not perfectly preserved

Neutron sparse-view CT image denoising

Denoised

Groudtruth

Sparse-view CT

Denoised

Denoised

Groudtruth

Sparse-view CT

Sparse-view CT

Groudtruth

Denoised

Successfully improve the image quality by removing noise and strip artifacts.

05.

Conclusion and outlook

Conclusion and outlook

Conclusion

- We designed a deep learning denoising model that is capable of awaring both local and global contexts. The test results on public dataset show the excellent performance compared to the state-ofthe-art methods.
- We applied the designed network model to remove noise and artifacts from neutron/X-ray sparseview CT images and achieved notable improvements in image quality.

Limitations and outlook

- The denoising process is low interpretable. The impact of denoising on the original fine details is uncertain.
- In the future, we will combine sparse-view reconstruction methods to further enhance the quality of CT images.

THANK YO

2023/11/01