

Unveiling local magnetic correlations: the development of magnetic pair distribution function at CSNS

Long Yang (杨龙) Tongji University

About me

- 2011-2015 Fudan University
- 2015-2016 Columbia University M.S. Ph.D.
- 2017-2021 Columbia University
- 2017-2020 Oak Ridge National Lab Joint Ph.D.
- 2021-2022 UCLA
- 2022-Now Tongji University

Postdoc **Assistant Professor**

B.S.

Acknowledgements

Simon Billinge Columbia Univ.

Matthew Tucker ORNL

Benjamin Frandsen Brigham Young Univ.

Wen Yin **CSNS**

https://yanglonggroup.com

CSNS, Dongguan, China

SNS, ORNL, USA

Collaborators:

- Juping Xu (CSNS)
- Yanzhong Pei (Tongji Univ.)
- He Lin (SSRF)
- **Emil Bozin (BNL)**
- Yuanpeng Zhang (SNS)
- Matthew Krogstad (ANL)

Structure-Property

spintronic applications

4

A. Bogdanov and C. Panagopoulos. *Nat. Rev. Phys.* 2020, 2, 9.

Neutron diffraction

Magnetic structures

C. G. Shull, W. A. Strauser, and E. O. Wollan. Phys. Rev. 1951, 83, 2.

Local magnetic structure

• The short-range local magnetic correlations are important for understanding exotic properties in advanced condensed matters.

Local structure probe

9

Local structure probe

Pair Distribution Function (PDF)

Sub-nanometer resolution

1D-PDF data processing

Why do we need spallation neutron source?

Intensity (a. u.)

- Low-Q: mostly Bragg peaks.
- High-Q: weak diffuse scattering.

- We need short-wavelength (highenergy), to get large Q_{max}.
- To improve real space resolution Δr .

 $4\pi \sin\theta$

Local structure probe

In a neutron total scattering experiment, we can obtain both!

Local atomic structure

mPDF theory

The orientationally averaged magnetic scattering (Blech and Averbach. Physics, 1964):

$$\frac{d\sigma}{d\Omega} = \frac{2}{3}NS(S+1)(\gamma r_0)^2 f^2 + (\gamma r_0)^2 f^2 \times \sum_{i \neq j} \left\{ A_{ij} \frac{\sin \kappa r_{ij}}{\kappa r_{ij}} + B_{ij} \left[\frac{\sin \kappa r_{ij}}{(\kappa r_{ij})^3} - \frac{\cos \kappa r_{ij}}{(\kappa r_{ij})^2} \right] \right\}$$

$$Self-scattering (i=j)$$

$$A_{ij} = \left\langle S_i^y S_j^y \right\rangle \qquad B_{ij} = 2\left\langle S_i^x S_j^x \right\rangle - \left\langle S_i^y S_j^y \right\rangle$$

$$S(\kappa) = \frac{d\sigma/d\Omega}{\frac{2}{3}NS(S+1)(\gamma r_0)^2 f^2} = 1 + \frac{1}{N} \frac{3}{2S(S+1)}$$

$$\times \sum_{i \neq j} \left\{ A_{ij} \frac{\sin \kappa r_{ij}}{\kappa r_{ij}} + B_{ij} \left[\frac{\sin \kappa r_{ij}}{(\kappa r_{ij})^3} - \frac{\cos \kappa r_{ij}}{(\kappa r_{ij})^2} \right] \right\}$$

$$\hat{\mathbf{x}} = \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_i - \mathbf{r}_i|} \text{ and } \hat{\mathbf{y}} = \frac{\mathbf{S}_i - \hat{\mathbf{x}}(\mathbf{S}_i \cdot \hat{\mathbf{x}})}{|\mathbf{S}_i - \hat{\mathbf{x}}(\mathbf{S}_i \cdot \hat{\mathbf{x}})|}$$

B. Frandsen, X. Yang, S. J.L. Billinge, Acta Cryst. A, 2014, 70, 1

15

mPDF theory

- Reduced structure function $F(\kappa) = \kappa[S(\kappa) 1]$ $F(\kappa) = \frac{1}{N} \frac{3}{2S(S+1)} \times \sum_{i \neq j} \left[A_{ij} \frac{\sin \kappa r_{ij}}{r_{ij}} + B_{ij} \left(\frac{\sin \kappa r_{ij}}{\kappa^2 r_{ij}^3} - \frac{\cos \kappa r_{ij}}{\kappa r_{ij}^2} \right) \right]$
- mPDF via Fourier transform

$$f(r) = \frac{2}{\pi} \int_{0}^{\infty} \mathrm{d}\kappa F(\kappa) \sin \kappa r$$

mPDF contains both spatial and orientational magnetic correlations.

$$= \frac{1}{N} \frac{3}{2S(S+1)} \sum_{i \neq j} \left\{ \frac{A_{ij}}{r} \delta(r - r_{ij}) + B_{ij} \frac{r}{r_{ij}^3} [1 - \Theta(r - r_{ij})] \right\}$$

Atomic PDF

$$f_{\text{atPDF}}(r) = (1/rN)\sum_{i\neq j}\delta(r-r_{ij})$$

mPDF theory

$$f(r) = \frac{2}{\pi} \int_{0}^{\infty} Q \left[\frac{I_{\rm m}}{\frac{2}{3}N_{\rm s}S(S+1)(\gamma r_0)^2 f_{\rm m}^2(Q)} - 1 \right] \sin Qr \, \mathrm{d}Q \quad (1) \quad \leftarrow \text{Experimental mPDF}$$

$$=\frac{1}{N_{s}}\frac{3}{2S(S+1)}\sum_{i\neq j}\left[\frac{A_{ij}}{r}\delta(r-r_{ij})+B_{ij}\frac{r}{r_{ij}^{3}}\Theta(r_{ij}-r)\right],\quad(2)\quad \longleftarrow \text{ Simulated mPDF}$$

X-ray

• f_m(Q) is the magnetic form factor

Neutron
$$F_{hkl} = \sum b_i \exp(2\pi i(hx + ky + lz))e^{-2W}$$

 $F_{hkl} = \sum f_i \exp(2\pi i(hx + ky + lz))e^{-2W}$

Magnetic
$$F_{hkl} = \sum_{i} q_j f_{Mj} \exp(2\pi i(hx + ky + lz))e^{-2W}$$

Antiferromagnetic

DiffPy.mPDF

S DiffPy Community Publications Products -

mpdf

The diffpy.mpdf package provides a convenient method for computing the magnetic PDF (mPDF) from magnetic structures and performing fits to neutron total scattering data. The mPDF is calculated by an MPDF calculator object, which extracts the spin positions and spin vectors from a MagStructure object that the MPDF calculator takes as input. The MagStructure object in turn can contain multiple MagSpecies objects, which generate magnetic configurations based on a diffpy.structure object and a set of propagation vectors and basis vectors provided by the user. Alternatively, the user can manually define a magnetic unit cell that will be used to generate the magnetic structure, or the magnetic structure can be defined simply as lists of spin positions and spin vectors provided by the user.

https://www.diffpy.org/products/mPDF.html

DiffPy.mPDF

DiffPy.mPDF

22

Multi-physics instrument, CSNS

The first total scattering neutron diffractometer in China.

Nuclear Inst. and Methods in Physics Research, A 1013 (2021) 365642

Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source

Juping Xu^{n,b}, Yuanguang Xia^{n,b}, Zhiduo Li^{n,b}, Huaican Chen^{n,b}, Xunli Wang⁴, Zhenzhong Sun⁴, Wen Yin^{1,b,*}

⁴ Institute of High Energy Physics, (Thinsa Academy of Sciences (CAS), Beijing 100049, China ^b Spellation Neutron Source Science Contro (SISSE), Douggaan 523803, China

*School of Mechanical Engineering, Dangpain University of Technology, Dongpain 523803, Clinic

*Department of Physics and Materials Science, City University of Hong Kong, 83 Yar Chee Arenue, Kowbow, Hong Kong, China

Parameters of the MPI detector array.

Detector bank No.	Secondary flight path 1.2 (m)	Scattering angle 20 (Degree)	³ He rube style	Number of ³ He tubes/ modules p ¹	Number of ³ He tubes/ modules et	Calculated dQ/Q ⊗~1 Å	Estimated Q range $(\dot{\Lambda}^{-1})$
Bank01	2.82	2.9-5.04	0.5 m×1/2 inch	*	20/1	(- -)	0.1-2.7
Bank02	2.319- 2.711	12.54- 17.62	Type- 1:20	~	96/12	659	0.45-9
Bank03	1.772- 2.065	31-42.25	atm, 0.5 m×1	32/4	96/12	2.1%	1.1-22
Bank04	1.351- 1.599	51.25- 67.32	snen	48/6	112/14	1.3%	1.8-34
Bank05	1131- 1.220	81.55- 105.18		72/9	112/14	0.8%	2.7-49
Bank06	1.166- 1.191	121.80- 145.51		32/4	64/8	0.55%	3.6-59
Bank07	1.232- 1.314	157.47 170.00	Type-2: 20 atm, 0.3 m× 1 inch	64/8	64/8	0.39%	4.1-62

MnO data

Experiment setup

- Sample Environment: CCR06
- Sample holder: 9mm vanadium can
- Sample install: He glovebox
- Sealed ring: In
- Neutron wavelength: 0.1-4.5Å

Data collected at March 2023 @ MPI

Courtesy of Juping Xu (CSNS)

PDF

MnO data

300 K

Reciprocal space data analysis

27

Real space atomic PDF data analysis

Software framework

Software framework

Magnetic structure

Set up initial magnetic structure

- Magnetic basis vector = [1, -1, 0]
- Magnetic propagation vector = [0, 0, 1.5]

Q_{max}=**25 Å**⁻¹

Co-refinement and toggle algorithms perform similarly well.

32

Different Q_{max}

Lorch function

No lorch

Lorch

MnTe

Short-range antiferromagnetic correlations enhanced thermoelectric material. •

R. Baral, et al., *Matter*, 2022, 5, 6. Y. Zheng, et al., *Sci. Adv.,* 2019, 5, 9.

500

Different exposure time

MnTe - different exposure time

8h R_w = 0.113 6h R_w = 0.114 2h R_w = 0.113

MnTe - different exposure time

20 K	8h	6h	2h
a (Å)	4.138	4.138	4.139
c (Å)	6.682	6.682	6.680
U _{Mn11} (Ų)	0.0067	0.0068	0.0068
U _{Mn33} (Ų)	0.0132	0.0132	0.0124
U ₀₁₁ (Ų)	0.0055	0.0055	0.0055
U ₀₃₃ (Ų)	0.0068	0.0067	0.0066
Corr. L (Å)	>1000	>1000	>1000
R _w	0.113	0.114	0.113

• High-quality mPDF data can be collected in **2 hours** at MPI.

Same exposure time

• The short-range antiferromagnetic correlation persists above Néel temperature.

🛸 DiffPy

Get DiffPy-CMI

Publications

DiffPy - Atomic Structure Analysis in Python

Products -

A free and open source software project to provide python software for diffraction analysis and the study of the atomic structure of materials.

Community

Products

DiffPy-CMI

xPDFsuite

PDFgetX3, PDFgetN3 and PDFgetS3

PDFgui

SrMise

mPDF

xINTERPDF

Python Packages

https://diffpy.org

PDFgui 2.X

- Support mPDF refinement
- UI visualize magnetic structure

PDF in the Cloud

https://pdfitc.org

L. Yang, et al. Acta Crystallogr. A (2021) 42

- The MPI instrument is capable of collecting high quality mPDF data.
- The mPDF may serve as a promising method for exploring local magnetic correlations in complicated condensed matters.

Thank you!

MnO

- Early neutron diffraction studies showed that MnO has the cubic rock-salt structure (s.g.: Fm-3m) at high temperature, and rhombohedral phase (s.g.: R-3m) at low temperature. (Shull et al., 1951; Roth, 1958)
- The antiferromagnetic spin arrangement in MnO is compatible only with monoclinic or lower symmetry (Shaked et al., 1988), so the true structural symmetry must be lower than R-3m.

MnO

- In 1949 Clifford Shull and Ernest Wollan showed the magnetic structure of MnO, which leads to the discovery of antiferromagnetism.
- The spin alignment axis lies within the (111) plane, and the spin direction reverses between adjacent sheets along the [111] direction.
- Clifford Shull won the Nobel Prize in Physics in 1994.

courtesy of ORNL

🔛 🏭 🔺 Lagen	
	+The JUC: •NEWS •PUBLICATIONS •PEOPLE •RES
IUCr Newsletter (2022) Volume 30	, NUMBER 2
HISTORY OF CRI	STALLOGRAPHY
Ernest O. W	OLLAN: AN UNSUNG HERO OF CRYSTALLOGRAPHY

MnTe

47

Atomic v.s. magnetic PDF

- mPDF is lower in frequency and characteristically broader than the atomic PDF due to the effects of the magnetic form factor.
- mPDF changes more dramatically with temperature.

Atomic and magnetic PDF refinements of the monoclinic model for three fitting ranges. (a)-(c) Refinement results when only the atomic structure is included in the model. The mPDF d(r) is seen in the difference curves, which are multiplied by two for clarity. (d)-(f) Results of co-refinements of the atomic and magnetic PDFs. In all panels, the blue curve is the experimental data, the red curve is the calculated pattern, and the offset green curve is the difference.

step function

$$w_{\rm s}(Q) = \begin{cases} 1 & \text{if } Q \leq Q_{\rm max}, \\ 0 & \text{if } Q > Q_{\rm max}, \end{cases}$$
(6)

a modified Fermi-Dirac function

$$W_{\rm FD}(Q) = \begin{cases} \frac{2}{e^{(Q-Q_{\rm max})/\Delta}+1} - 1 & \text{if } Q \le Q_{\rm max}, \\ 0 & \text{if } Q > Q_{\rm max}, \end{cases}$$
(7)

and the conventional Lorch function³³

$$w_{\rm L}(Q) = \begin{cases} \frac{Q_{\rm max}}{\pi Q} \sin\left(\frac{\pi Q}{Q_{\rm max}}\right) & \text{if } Q \le Q_{\rm max}, \\ 0 & \text{if } Q > Q_{\rm max}. \end{cases}$$
(8)

B. Frandsen, et al., J Appl. Phys., 2022, 132, 22.

50

Co-refinement v.s. Toggle

20 K	no mPDF fit	Co-refine mPDF fit	Toggle mPDF fit
a (Å)	3.161	3.161	3.161
c (Å)	7.628	7.619	7.618
U _{Mn11} (Ų)	0.0050	0.0056	0.0056
U _{Mn33} (Ų)	0.0044	0.0066	0.0064
U ₀₁₁ (Ų)	0.0061	0.0060	0.0051
U ₀₃₃ (Ų)	0.0057	0.0063	0.0066
R _w	0.30	0.086	0.085

• Co-refinement and toggle algorithms perform similarly well.

MnO 20K-300K

Q_{max}=25 Å⁻¹, Use Lorch

mPDF

$$\begin{split} G_{\text{tot}}(r) &= \mathcal{F} \bigg\{ \mathcal{Q} \bigg(\frac{I_{\text{n}}}{N_{\text{a}} \langle b \rangle^{2}} - \frac{\langle b^{2} \rangle}{\langle b \rangle^{2}} \bigg) \bigg\} + \mathcal{F} \bigg\{ \mathcal{Q} \frac{I_{\text{m}}}{N_{\text{a}} \langle b \rangle^{2}} \bigg\} \\ &= G_{\text{n}}(r) + d(r) / N_{\text{a}} \langle b \rangle^{2}, \end{split}$$

where $G_n(r)$ is the atomic (nuclear) PDF and $d(r) = \mathcal{F}\{QI_m(Q)\}\)$ is a quantity that we will call the 'unnormalized mPDF', since it does not involve division by the magnetic form factor $f_m(Q)$. A straightforward application of the convolution theorem reveals that

10.00

$$d(r) = C_1 \times f(r) * S(r) + C_2 \times \frac{\mathrm{d}S}{\mathrm{d}r},$$

where C_1 and C_2 are constants related by $C_1/C_2 = -1/(2\pi)^{1/2}$ in the fully ordered state, * represents the convolution operation, and $S(r) = \mathcal{F}\{f_m(Q)\} * \mathcal{F}\{f_m(Q)\}$. The quantity $\mathcal{F}\{f_m(Q)\}$ is closely related to the real-space spin density. Roughly speaking, d(r) is equivalent to the proper mPDF f(r)twice broadened by the spin density with an additional peak at low r produced by the derivative term in equation (6). The two