

Alternative synchronization approach of external sample environment and neutron data acquisition

A in-situ small angle neutron scattering-photo irradiation experiment setup

Hanqiu Jiang, Haibiao Zheng, Chunyong He, Zhenhua Xie, Hua Yang, Yubin Ke jianghq@ihep.ac.cn China Spallation Neutron Source

Length and time scale of neutron scattering techniques

(Picture: Karin Griewatsch, Kiel University, KFN)

Factors affecting time resolution:

- Neutron flux
- Instrument design
 - Beam collimation and aperture
 - Detection electronics
 - Data acquisition protocols
- Sample environment device
- Synchronized control techniques

Cost-efficient improvement

Coupled with sample environment devices

Histogram Sequential measurements with fixed width of time bins limited by the performance of the detector read-out

Event mode Time stamps (µs-ns) for each detected neutron

Single-shot measurement (mins to hours) Cyclic data acquisition

(sub ms to mins)

Polymerization process Macromolecules 2010, 43, 19, 8218–8232 *Growth of Silica Nanoparticles Langmuir* 2012, 28, 9, 4425–4433

Coupled with sample environment devices

Instrument control system Trigger signal Device control system

Time stamp check

SANS @ CSNS

Instrument layout

Histogram

Moderator	Moderator	CHM (20K)
Main detector Chopper	Detector area	$1000 \times 1000 \text{ mm}^2$
	Detector resolution	10×8 mm
	Wavelength range	1 -12Å
Sample stage	Neutron	$5 \times 10^{6} (n \cdot cm^{-2}s^{-1})$
Data structure	brightness	@100kW
		0.008-0.1.2 Å ⁻¹
	Q-range	(SDD=2m)
Detector nexus file		0.005-0.6 Å ⁻¹
		(SDD=4m)
Run info Start/end time in UTC (to second)		

Event data Neutron position, pulse ID, relative time within pulse (4.56 µs/step)

Waiting list:

- . More accurate initiation/end time
- 2. Sample environment data logging

Photo irradiation device setup

Data alignment through detector counts examination

- ✓ Unperturbed instrument protocol
- ✓ Easier synchronization
- ✓ Accurate initiation point

(without requiring absolute timing)

External light Neutron beam Optical mirror (neutron transparent)

Time resolution = 1 pulse period (40ms)

Photo irradiation device setup

Shutter test

Shutter test

Shutter test

Experiment time with offsets / s

11

Experiment results

User experiment (Prof. Yang Haibo, Dr. Li Weijian)

Experiment results

- Optimization of mini shutter: shape, speed, material
- Automization of data reduction process
 - Allocation of shutter opening point
 - \circ Truncation and superposition of neutron data
- Decipher faster kinetic process

Acknowledgement

Sun Yuan (孙远)

Li Jiajie (李嘉杰)

00

Wu Xuan (吴煊)

East China Normal University

Prof. Yang Haibo's Research group Long-term user and collaborator

Jiangnan University

Prof. Jiang Jianzhong

Thank you!

Light source

Full Spectrum Xenon lamp (Full Spectrum)

MAX-003

 Monochromatic light Band pass filters×8

REAL SPECTRA

Adjustable intensity Neutral density filter

Optical mirror

Material survey

Mirror base/0.5mm	Coating (~100nm)
Quartz	UV-Enhanced Aluminum
	Aluminum
	Titanium
Sapphire	Aluminum
	Titanium
Silicon wafer	Aluminum
	Titanium

Quartz base coated with UV-Enhanced Aluminum

Silicon wafer base coated with Aluminum

SNS

Coupled with sample environment devices

during operation (external stimulation

