

International Collaboration on Advanced Neutron Sources (ICANS XXIV)

aginceting, Flivstey, Isanginia University

(Compact Accelerator-driven Neutron Source) CANS Projects in China

Xuewu WANG Professor, Tsinghua University, Beijing, China wangxuewu@tsinghua.edu.cn Nov. 3rd, 2023 @ Dongguan, China

CONTENTS

1. Neutron Sci&Tech Society in China

2. CANS Projects in China

3. Discussion and Perspective

Large Neutron Sources in China

CCANS Chinese Neutron Scattering Society

2004/05/06/08, Workshop on Applications of Spallation Neutron Source

- 2010/11/12, Workshop on Applications of National Neutron Facilities
- 2012.12-, CNSS: Chinese Neutron Scattering Society

2013/14/15/16/17/18/19/20/23, National conference on neutron scattering & Workshop on Applications of National Neutron Facilities

The Official Web Page of Union for Compact Accelerator-driven Neutro Sources (UCANS)

Meetings

- UCANS-0, March 13, 2010; Hotel Allegra, Kloten, Switzerland
- UCANS-I, August 15-18, 2010; Tsinghua University, Beijing, China
- UCANS-II, July 5-8, 2011; Indiana University, Bloomington, Indiana, USA
- UCANS-III, July 31-August 3, 2012; Bilbao, Spain
- UCANS-IV, September 23-27, 2013; Hokkaido University, Sapporo, Japan (40th Anniversary of Hokudai LINAC)
- UCANS-V, May 12-15, 2015; Laboratori Nazionali di Legnaro, Padova, Italy (Proceedings: Il Nuovo Cimento C - Open Access, Vol.38, N.6, 2015)
- UCANS-VI, October 25-28, 2016; Xi'an Jiaotong University, Xian, China
- UCANS-VII, March 11-15, 2018; Bariloche, Argentina
- UCANS-VIII, July 8-11, 2019; Paris, France
- (Proceedings: EPJ Web of Conferences Open Access, Vol.231, 2020)
- UCANS-WEB, Nov.30 Dec.3, 2020; RIKEN, Japan (ONLINE, only invited talk)
- UCANS-IX, March 29-31, 2022; RIKEN (Online, including poster session)
- (Proceedings: Journal of Neutron Research Vol.24, issue 3-4, 2022)
- UCANS-X, Oct. 16-19, 2023; Budapest

http://www.ucans.org/

Outline

Although the field of neutron scattering has been flourishing for many decades now advances in science and technology in this field have been dominated by a fruitful combination of major international facilities (based on reactors as at the ILL, HBIR, NCNR, JRR or large accelerators such as at IPNS, ISIS, SNS and JSNS) supported by networks of smaller research reactor facilities (e.g. those at Berlin, Vienna, Budapest, Missouri and many others). Recent advances in accelerator technology and neutronic design have made possible the construction of small-scale accelerator-driven neutron facilities that will be able to play a significant role in future advancements in neutron technology and science. This opens up new opportunities for organizations to enter the field of neutron physics with modest investments and without the proliferation and safety concerns associated with building a new research reactor. Such facilities can be used in fields as diverse as materials science, nuclear physics, medical physics, engineering, and cultural heritage. A satellite meeting to the ICANS-XIX Meeting (March 2010, Grindelwald, Switzerland) offered an opportune occasion to consolidate an alliance among institutions interested in constructing and operating such facilities. At this meeting participants unanimously acceded to the establishment of the Union for Compact Accelerator-driven Neutron Sources (UCANS). The eight initial members-those in attendance at this initial meeting-were: from the USA, Argonne National Lab (ANL) and Indiana University, from Japan, the High Energy Accelerator Research Organization (KEK), Hokkaido University, Kyoto University and RIKEN, from China, Peking University and Tsinghua University, with additional potential members from elsewhere. Jack Carpenter of ANL serves as the initial spokesperson of UCANS. In view of the actively ongoing works on accelerators, target-moderators, instruments and optics, all members felt a genuine need for frequent meetings (every ~6 months rather than 2 years like ICANS). The participants of this new collaboration are united in their firm believe that UCANS is complementary to ICANS membership in both collaborations is encouraged.

CCANS C-CANS: Chinese Collaboration on CANSs

- Communication, Collaboration, Education, Development
- ➢ 3 topical group with topical seminars:
 ☆Accelerator Yuanrong LU, Qingzi XING, Chunlei WU
 ☆TMR Tianjiao LIANG, Sheng WANG, Kun ZHU
 ☆Application Yuntao LIU, Yuanhao LIU, Yigang YANG
- Seminar: might be together with CNSS conference
- Contact office: Tsinghua University;
- Contact person: Xuewu WANG <u>wangxuewu@tsinghua.edu.cn</u>

- C-CANS Seminar 1 @ Jan 20, 2019 @ Tsinghua Univ.
- C-CANS Seminar 2 @ Jan 04-05 2020 @ CIAE
- C-CANS Seminar 3 to be held @ CSNS

1. Neutron Sci&Tech Society in China

2. CANS Projects in China

3. Discussion and Perspective

CCANS Cyclotron-based BNCT @ CIAE

The full power shooting test of 14kW Beryllium target was completed, and the Neutron flux was larger than 1×10⁹ n/cm²/s Courtesy Yuntao LIU @ CIAE

Installation started in September 2020

Device Commissioning in March 2021

The neutron target was installed in June 2021

The current exceeded 1mA in Jan 2022

CCANS Cyclotron-based BNCT @ CIAE

BNCT equipment clinical center cooperation with Tai'An hospital

CNNC

中国原子能科学研究院 CHINA INSTITUTE OF ATOMIC ENERGY

CCANS Cyclotron-based Neutron Imaging

A neutron imaging system is developed based on an 18MeV cyclotron. Energy: 18MeV / Current : 1mA / Flux at sample position :>1×10⁶ n/cm²/s

山国原马

CNNC

CHINA INSTITUTE OF ATOMIC

CCANS Neutron Reference field—fast

11

> Fast neutrons (1keV~20MeV)

- > Based on 2×1.7 MV tandem accelerator
- > Parameters of the accelerator:
 - ✓ Terminal voltage: 2×1.7MV
 - ✓ Ion sources: p、d、C、O、Cu ...
 - ✓ Beam mode: steady/pulsed
 - ✓ Beam current: on ion source (>100uA), on target (1uA~20uA)
 - ✓ pulse width: 2ns
- Nuclear reactions: ⁴⁵Sc(p,n), ⁷Li(p,n), T(p,n), D(d,n), T(d,n)

CCANS Neutron Reference field—fast

Neutron Energy(MeV)	Nuclear reaction	Measurement standard
0.144	⁷ Li(p,n) ⁷ Be	Hydrogen-filled proportional counter(H ₂)
0.25	⁷ Li(p,n) ⁷ Be	Hydrogen-filled proportional counter(H ₂)
0.565	⁷ Li(p,n) ⁷ Be	Hydrogen-filled proportional counter(CH ₄)
1.2	T(p,n)³He	Hydrogen-filled proportional counter(C ₃ H ₈)
2.5	T(p,n)³He	Recoil-proton telescope
5.0	D(d,n) ³ He	Recoil-proton telescope
14.8	T(d,n)⁴He	associated alpha particle detector
19	T(d,n)⁴He	Recoil-proton telescope (scintillation)
8keV、27.4KeV	⁴⁵ Sc(p,n) ⁴⁵ Ti	LiF-SSD、Recoil-proton telescope

Recoil proton proportional counter

Semiconductor telescope

Recoil proton telescope

でCANS Simulated workplace neutron field 「 し版集図 中国原子能科学研究院 CHINA INSTITUTE OF ATOMIC ENERGY

Neutron dose equivalent standard for simulation of PWR working place

CCANS Neutron Reference field (>20MeV)

General View of the 100 MeV Cyclotron

CNNC

山国原子能科

CHINA INSTITUTE OF ATOMIC ENERGY

- The current at ion source : more than 10 mA
- Proton energy: 70~100 MeV (neutron energy: 68MeV- 98 MeV)
- Pulse width: 10 ns / Pulse interval time: 100-1000 μs (on developing)

CCANS Neutron Reference field (>20MeV)

> High energy range

70MeV~100MeV quasi-monoenergetic neutron reference fields

CCANS Compact Pulsed Hadron Source @ THU

CPHS @ Tsinghua Univ.

Compact Pulsed Hadron Source Project cost: ~10M USD, supported by

Tsinghua University System designed and built: by Dep.

of Engineering Physics

Project Schedule

- Project approved by the univ. in 2009
- 3 MeV proton beam from RFQ and neutron beam with Be target and room temperature PE moderator achieved in **2013**
- ~2000 hrs beam time for neutron imaging, test of the neutron detectors including Boron-coated straw-tube array and Gadolinium-doped MCP
- 13 MeV/ 42mA/~250W proton beam with RFQ and DTL, and cold neutron beam with ~12K solid methane achieved in **2019**

Project Current Status

- Accelerator operation: 13 MeV/ 34.5 mA/6 kW; neutron production: 1.6 kW proton on Be target
- Application: proton implantation/ gif-SANS(grazing-incidence focusing Small-Angle Neutron Scattering)
- Operation time: ~700 hrs in 2022

grazing-incidence focusing SANS

CCANS

CPHS

RFQ-based BNCT @ THU

Key design parameters of the accelerator and neutron station for AB-BNCT

Parameter	Value
Epithermal neutron flux	$> 1 \times 10^9$ n/s/cm ²
Fast neutron component (per epithermal neutron)	$< 2 \times 10^{-13}$ Gy \cdot cm ²
Gamma ray component (per	$< 2 \times 10^{-13}$
epithermal neutron)	Gy ⋅ cm ²
Ratio of thermal flux to epithermal flux	<0.05
Ratio between the total neutron current and the total neutron flux	>0.7
Proton beam energy	2.7 MeV
Proton beam current	30 mA
Beam duty factor	100%
Neutron target	Solid Li (rotatable)

Project information:

Accelerator and neutron station designed by Tsinghua University Project will be supported by China Baoyuan Investment Co., Ltd. **Project Schedule**

- Design in 2023
- Manufacture in 2024
- Assembly and beam commissioning in 2025

CCANS Bimodal imaging with a single e-LINAC@THU

Courtesy Yigang YANG @ THU

CCANS e-LINAC driven bimodal source @ THU

• Supported by the National Natural Science Foundation of China (1735008, 3.5M¥);

- A 9MeV/900W electron linac is used to deliver bremsstrahlung photons, and a heavy water convertor is used to generate photoneutrons with a yield of 2×10^{11} n/s;
- The brilliance of imaging neutrons (thermal neutrons) is $2500n/cm^2/s@L/D=100$;
- The imaging photons share the same imaging geometry with that of imaging neutrons, and have the brilliance of 100~1000 folds higher, in order to compensate the lower intrinsic detection efficiency for 100 keV photons.
- The detector used is a ⁿMCP readout by a CMOS camera to acquire the photons' image and neutrons' image successively.
- A cross delay-line ⁿMCP is also successfully involved to register neutrons to form neutron image with a ultra-low dark count background, say , 3.55×10^{-5} count/pix/sec
- This prototype system has been used for the inspection of residual core of turbine blades and analysis of lithium ore grades.

CCANS Bimodal imaging with a single e-LINAC

Fig. 2 Principles of e-LINAC-driven bimodal imaging.

CCANS Bimodal imaging with a single e-LINAC@THU

Bimodal imaging:

- Pixel-wise fusion
- Material identification
- ✓ Isotope sensitive
- ✓ Light element sensitive
- ✓ Heavy metal penetrating

CCANS Bimodal imaging with a single e-LINAC@THU

CCANS **Application: grade analysis of lithium ore**

_ithium Content wt%

X Position (cm)

Photo

25

Real Li %

CCANSPKUNITY: D+ RFQ & Be target & Thermal n

D

Courtesy Yuanrong LU @ PKU

CCANS PKUNITY: Four-Pole High-intensity D+ RFQ

201.5MHz, 2.0MeV D+ 10 mA, 4%, 400ms, 100Hz

Water cooled

PKUNITY: neutron parameters

Technical data	designed	measured
Fast Neutron yield	>10 ¹¹ n/s	$2.4 \times 10^{11} \mathrm{n/s}$
Neutron flux at imaging plane	>10 ⁴ n/cm ² /s	$2.35 \times 10^4 \text{n/cm}^2/\text{s}$ (L/D=50)
Image dimension	20 cm × 20 cm	21 cm × 21 cm
Camera resolution	Better than 0.4 mm	Horiz: 0.33 mm Vert: 0.28 mm
Imaging resolution	Better than 0.2 mm	Horiz: 0.13 mm Vert: 0.11 mm
Dynamic range	>80:1	195:1
Contrast sensitivity	5%	5%
Dose	<2.5 µSv/h	<0.5 µSv/h

BISOL-D+ Driver LINAC @ PKU

BISOL-D+ Driver LINAC @ PKU

10 mA D+, lithium target, neutron energy ~20 MeV

Vertical neutron flux [n/(cm^2*s)]

CCANS

Horizontal neutron flux [n/(cm^2*s)]

n flux, n/cm ² /s	>10 ¹⁴	>5×10 ¹⁴	>10 ¹³
dpa in steel, dpa/fpy	> 8	> 4.4	> 1.3
Volume, cm ³	~12	~60	~100

BISOL-D+ Driver LINAC @ PKU

- D+ variable energy (3~40MeV)
- > D+ 25mA, also for proton and Alpha particles
- Proton, 33MeV; He²⁺, 81MeV)
- Components: LEBT+RFQ+MEBT+SRF+HEBT, 162.5MHz
- CW mode

CCANS

➤ Beam power loss ≤1 W/m

CCANS Compact high-energy high-flux deuterium-beryllium neutron source @ CAS-IMP

The compact high energy and high flux deuterium-beryllium neutron source uses the deuterium beam to bombade the beryllium target to generate forward neutrons. The flux in the forward region is comparable to that of IFMIF, and then uses the neutrons produced to

irradiate the small sample material.

The neutron source mainly consists of superconducting linac, fluidized beryllium alloy particle flow target system, differential system, etc.

Schematic diagram of a compact high-energy high-flux deuterium-beryllium neutron source

Parameters	Value	
Reaction	D+Be	
Design index	50MeV@5-10mA	
Neutron energy	~14MeV	
Sample size	~cm	
Irradiation intensity	20-50dpa/y	
Construction time	~6.5y	

Courtesy Lei YANG @ CAS-IMP

COMPACT COMPACT high-energy high-flux deuterium-beryllium neutron source @ CAS-IMP

Superconducting linac (RFQ)

Picture of RFQ

Results of the outlet beam current

The RFQ has an incident power of 122kW and successfully elicits H_2^+ with beam energy~1.55MeV/u@~7.0mA

CCANS Compact high-energy high-flux deuterium-beryllium neutron source @ CAS-IMP

210keV@11.2mA coupling thermal test of proton beam and Dense Granular flow Target

顆粒流具有稳定的流动形态。 Long time flow test demonstration of granular flow target

Real-time image of granular flow and ion beam coupling thermal test

Granular flow target electric heating 400°C high temperature long time flow test display

Image of granular flow and ion beam coupling thermal test

low energy high current ion beam thermal measurement platform

Low energy high current ion beam coupled with granular flow target thermal measurement platform 34

D-BNCT01&02 by CAS-IHEP

developed

D-BNCT01 by CAS-IHEP

- Purpose: Engineering verification, Boron drug test platform
- Organization: IHEP (Institute of high energy physics, www.ihep.ac.cn), CASBNCT (www.casbnct.com)
- Budget: about\$5,000,000 (reuse some old accelerator equipment)
- Progress: 2017 started, 2020 completed, under operation

D-BNCT01 by CAS-IHEP

< 0.05

Key solution: RFQ+ Solid lithium target

Breakthrough in key technologies: lithium target, BSA, remote maintenance of target

J.Y. Chen, J. Y., J. F. Tong, Z. L. Hu, X. F. Han, B. Tang, Q. Yu, R. Q. Zhang, C. G. Zhao, J. Xu, S. N. Fu, B. Zhou and T. J. Liang* (2022). "Evaluation of neutron beam characteristics for D-BNCT01 facility." <u>Nuclear Science and Techniques</u> **33**(1)12.

Thermal neutron flux ratio

D-BNCT01 by CAS-IHEP

- K. Chen, S. Liu, L. W. Lv, J. F. Tong, J.Y. Chen, H.J. Liang, Y.J. Wang, F. Hu, Q.Y. Liu, H. Li, Z.T. Chen, J.C. Li, Z.J. Wang, Y.N. Chang, J. Li, H. Yuan, S.N. Fu, T.J. Liang and G.M. Xing (2023), Well-established immunotherapy with R837-loaded boron neutron capture-shocked tumor cells, <u>Nano Today</u> 52 101995
- J. Xiang, L. Ma, J. F. Tong, N. Zuo, W. T. Hu, Y. P. Luo, J. Q. Liu, T. J. Liang, Q. S. Ren and Q. Liu (2023). "Boron-peptide conjugates with angiopep-2 for boron neutron capture therapy." <u>Frontiers in Medicine</u> **10**.3389

D-BNCT02 by CASBNCT

The Dongguan People's Hospital project:

- The total construction area of the Boron Neutron Treatment Center building is 18,421 m², which can accommodate two BNCT devices.
- This project is lead by CASBNCT, with support of IHEP&CSNS.
- It consists of a RFQ accelerator, target, BSA, patient positioning and support system, dose monitoring system, treatment planning system (TPS) and treatment control system(TCS).
- Key technological breakthroughs: RFQ & rotating lithium target, TCS,TPS.

Accelerator Type		RFQ	
Proton Energy		2.8MeV	
	Mean Current	20mA	
	Treatment Room	2	
	Tartget Type	Rotating Lithium Target	
	epithermal neutron flux	> 1x10 ⁹ n/s/cm ²	
	Fast neutron compoent	< 2x10 ⁻¹³ Gy cm ² /n	
	γ compoent	< 2x10 ⁻¹³ Gy cm ² /n	
	thermal neutron flux ratio	< 0.05	
		BNCT Center	

CCANS Xiamen Humanity Hospital – Neuboron BNCT Center

Compact Accelerator-driven Neutron Source

System Name: Neuboron NeuPex, Model Block-I System designed and built by Neuboron Medical Group Project 3rd Party: TAE Life Sciences

NeuPex Specification

- Epithermal Neutron Beam: $> 1.0 \text{ x } 10^9 \text{ n } \text{cm}^{-2} \text{ s}^{-1}$
- Conversion Efficiency: $>5 \times 10^7$ epi-n cm⁻² s⁻¹ kW⁻¹
- Tandem Accelerator: proton beam @ 2.35 MeV, 10 mA
- Target Material: stational lithium target
- Beam Lines: 2 horizontal, 1 vertical

Project Current Status

- Fully commissioned and stably running at 2.35 MeV/10 mA
- One horizontal beam built and commissioned
- IIT: 15 patients treated with 19 irradiations
- Planned Clinical Trial: 2024 O1

Courtesy Yuanhao LIU @ Neuboron

- Zhang, Z.; Chong, Y.; Liu et al. A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China. Cancers 2023, 15, 4060. <u>https://doi.org/10.3390/cancers15164060</u>
- International Atomic Energy Agency. Advances in Boron Neutron Capture Therapy; International 40 Atomic Energy Agency: Vienna, Austria, 2023.

CCANS

X-TANS by XJTU

- ECR IS+ELEBT+RFQ+HEBT
- Proton beam: 2.5MeV, 10mA
- Beam commission: RFQ input 11.28mA, output 10.56mA Transmission efficiency: 93.6%

Parameter	value
Frequency [MHz]	325
Peak Beam current [mA]	12
duty factor	3%
Input energy [keV]	30
Output energy [MeV]	2.5
Accelerator length [m]	2.60
Trans. [%]	98.1
Acc (PARMTEQM) [%]	93.2
Cavity power consumption [kW]	125

Courtesy Sheng WANG @ XJTU

- > Accelerator: RFQ
- Component: ECR IS+LEBT+RFQ+HEBT+Target

> Main parameter

- Frequency: 165MHz
- Beam current: 25mA
- Duty factor: 100%
- Input-output energy: 40keV 2.8MeV
- Transmission efficiency: >99.0%

RFQ-BNCT by XJTU

Development of high intensity steady neutron sources HINEG :

- HINEG-I: D-T neutron generator coupled with zero power reactor CLEAR-0, 6.4×10¹² n/s, completed
- HINEG-II: high intensity D-T source HINEG-IIa, cyclotron base regulatable spectrum steady neutron source HINEG-IIb, 10^{13~14}n/s, under construction, operations expected around the end of 2023
- HINEG-III/GDT: High flux steady neutron source HINEG-III, GDT-based V-FNS HINEG-GDT, under design
- □ A series of compact neutron generators, 5×10⁹~10¹⁰ n/s DD neutrons, have been developed and applied in radiography, etc.
- Different mini neutron generators, with yield of 10^{7~8}n/s, have been developed and applied for logging, elements analysis, etc.

Courtesy Qi YANG @ FDS For more information, visit <u>www.fds.org.cn</u>

HINEG-I @ FDS

Jan, 2018 6.4×10¹² n/s Fast n imaging Thermal n imaging

ENERGY RESEARCH

INTERNATIONAL JOURNAL OF

HINEG High Intensity D-T Fusion Neutron Generator

Int. J. Energy Res. 2018, 42(1): 68-72

CCANS

TMSR-PNS @ CAS-SINAP

Based on the requirements of Thorium Molten Salt Reactor Nuclear Energy System (TMSR) for thorium-uranium fuel cycle and molten salt key nuclear data, an e-linac-driven white neutron source (TMSR-PNS) was established, and experimental studies on the full cross section, capture cross section and thermal neutron scattering cross section of ²³²Th, F, Li, Be, graphite and other nuclides were carried out to provide basic data for TMSR research.

Reaction cross section	energy
233TI(m f)	10-200eV
U(II , I)	>500eV
$233\mathbf{I}$ (m w)	5-50eV
υ-(π,γ)	>500eV
²³² Th(n, y)	10eV-5KeV
232Th (m f)	<60KeV
1 11(11,1)	1-500KeV
$233\mathbf{D}_{0}(\mathbf{n},\mathbf{u})$	Thermal
r a(n , <i>y</i>)	>0.1 MeV
¹⁹ F (n,inl)	0.23~2.8MeV
⁶ Li (n,T)	0.1~10MeV
⁹ Be(n, γ)	>100eV

Courtesy Jingeng CHEN @ CAS-SINAP

- □ Electron energy: 15 MeV
- **□** Pulse duration : 3-10 ns/15-30 ns/0.5-3 µs
- □ Repetition frequency : 1-260 Hz
- □ Beam intensity : 0.1 mA
- \Box Neutron yield : ~10¹¹ n/s

- Nuclear data measurement
- **D** Boron equivalent measurement
- □ Material shielding performance test
- Verification of thorium uranium
 - conversion

facility of CSNS

TMSR-PNS @ CAS-SINAP

> Key nuclear data measurements

- Total cross section of ²³²Th,^{6,7}Li,^{nat}Be in thermal energy range
- Scattering cross section of GH3535, graphite, fused salt with thermal neutron

Applied neutron research

- Graphite, fused salt boron equivalent measurement
- Structure function integrated rare earth alloy shielding material performance test
- Neutron/gamma mixed field irradiation for semiconductor and alloy measurements

direction of nuclear data measurement

application of the facility

48

CCANS Intense D-T neutron generator @ LZU

> An intense D-T neutron generator is being developed at Lanzhou Univ.

 \bigstar Plan to generate neutrons (D-T) in the end of 2023

CCANS Compact neutron generator @ LZU

> A compact D-D neutron generator with a neutron yield of 10⁸ n/s had been developed in 2019

Parameters

120 keV-150keV ★ D Beam energy: ★ D Beam current : >3mA ★ Target: Mo ★ D-D neutron yields: >1x10⁸ n/s ★ Size: 234 mm(diameter)x 984 mm(length)

CCANS Compact neutron generator @ LZU

A compact D-D neutron generator with a neutron yield of 10⁹ n/s have also be developed in 2023 Parameters

RFQ-BNCT in Mazu Hospital by LZU

RFQ Driven BNCT Device (In commission)

Courtesy Long GU @ LZU

RFQ-BNCT in Mazu Hospital by LZU

Parameter	Value
Primary Particle	Proton
Proton Energy	2.6 MeV
Current during Commission	6-15 mA
Target	Lithium
Epithermal Neutron Flux	5.0×10 ⁸ ~1.23×10 ⁹ n•cm ⁻² •s ⁻¹
Fast neutron Contamination	1.9×10 ⁻¹³ Gy•cm ²
Photon Contamination	1.6×10 ⁻¹³ Gy•cm ²
Current to Flux	0.72
Thermal Neutron Fraction	0.03

RFQ-BNCT in Mazu Hospital by LZU

- > 2022.08, Equipment installation begins
- > 2023.01, System commision begins
- > 2023.07, Beam Current reach 6 mA
 - ✓ Neutron Flux , Spectrum, Spatial Distribution were measured
 - ✓ Cell and animal experiments were carried
- 2023.08, Beam Current reach 8 mA $\phi_{epi}=6.8\times10^8\ n\cdot cm^{-2}\cdot s^{-1}$

Working towards higher flux Ongoing

- 2023.11, To complete registration inspection
- 2024.03, Proposed IIT experiments

CCANS AB-BNCT in Bo'ao, Hainan

China Biotech Services Holdings Limited 中國生物科技服務控股有限公司

HAINAN FREE TRADE PORT BO'AO HOPE CITY

On June 23, 2022, **China Biotech Services** signed a purchase agreement with **Sumitomo Heavy Machinery Co., LTD** and pharmaceutical company **Stella Pharma** for **BNCT therapeutic equipment and related drugs**. Officially introduced the world's only approved international most advanced cancer treatment technology BNCT equipment, drugs and services.

CANS @ CAEP-INPC

No.	Name	Reaction	Voltage (MV)	Current (mA)	Yield (n/s)	Application	Status
1	PD-300 (2007)	D-T	0.3	20	1×10 ¹²	Nuclear Data, Neutron Imaging, Radiation	Operational
2	NG-11 (2014, 2017)	D-T	0.25	1	1×10 ¹¹	Neutron Imaging	Operational
3	CANS-INPC	D-D	13	0.5	6.4×10 ¹¹	Neutron Imaging	designed
4	NG-308 (2017, 2020, 2022)	D-D	100	5	3×10 ⁸	Material analysis, Research	Operational
5	NG-10	D-D	240	30	1×10 ¹⁰	Neutron Imaging	designing

- [1] Tritium target lifetime: >90h@8×10¹¹n/s
- [2] Tritium target lifetime: >40h@1×10¹¹n/s
- [3] A compact accelerator-driven deuterium-deuterium neutron source using heavy water jet target, Nuclear Inst. and Methods in Physics Research, A 997 (2021) 165165

[4/5] Development and applications of compact deuterium-deuterium neutron generator at INPC, CAEP, UCANS-10

E-mail addresses: wuchunlei@caep.cn (Wu Chunlei), kejianlin@caep.cn (Ke Jianlin).

Courtesy Chunlei WU @ CAEP-INPC

CCANS Proton Accelerator Facility (PAFA) @ SYSU

PAFA (Proton Accelerator FAcility): a multi-terminal experiment platform based on accelerator-based neutron sources

Beam-line system: ECR IS+ 2.5 MeV RFQ+MEBT+8 MeV DTL+HEBT

Terminal system: Four terminals for nuclear experiment (epithermal and fast neutron), materials irradiation and BNCT, respectively.

The parameters of PAFA-RFQ

Parameters	Value
Particles	\mathbf{H}^{+}
Frequency [MHz]	200
Beam current [mA]	20
Output energy [MeV]	2.5
Length of vane [mm]	3945.3
Kilpatrick factor	1.46
Transmission efficiency	99.5%
<i>Q</i> factor	12848
Power loss [kW]	98.38

Parameters	Value
Particles	\mathbf{H}^{+}
Frequency [MHz]	200
Beam current [mA]	10
Output energy [MeV]	8.0
Cavity length [mm]	2409.43
Transmission efficiency	100%
Beam dynamics type	APF
Kilpatrick factor	1.42
Q factor	13987
Power loss [kW]	90.78

The parameters of PAFA-DTL

Terminals

- Epithermal neutron terminal (1F): ⁷Li (p, n)⁷Be +moderator to produce hundreds keV neutrons
- Nuclear materials terminal (1F): study on material irradiation damage of protons
- Fast neutron terminal (-1F): ⁹Be(p, n)⁹B+moderator to produce neutrons with a average energy of 1 MeV;
- BNCT terminal (-1F): 1.3×10⁹ n/cm²/s of neutron flux to meet the requirement of IAEA for BNCT applications

1. Neutron Sci&Tech Society in China

2. CANS Projects in China

3. Discussion and Perspective

Large NSs and CANSs in China

AB-BNCT projects in China

AB-BNCT projects in China

Facility	Affiliation	Reaction	Accelerator	Flux n/cm²/s	Energy	Purpose	Status
AB-BNCT	NeuBoron @Xiamen	p-Li	2.35MeV-10mA / ES	$> 1 \times 10^{9}$	Epi-th	BNCT	Clinical trial
D-BNCT01	CAS-IHEP @Dongguan	p-Li	3.5MeV-5mA / RFQ	-	Epi-th	BNCT exp	Experimental
D-BNCT02	CASBNCT @Dongguan	p-Li	2.8MeV-20mA/RFQ	>1×109	Epi-th	BNCT	Constructional
RFQ-BNCT	by LZU @Mazu	p-Li	2.6MeV-15mA/RFQ	>1×10 ⁹	Epi-th	BNCT	Commissioning
X-TANS RFQ-BNCT	by XJTU @Huzhou	p-Li	2.5MeV-10mA / RFQ 2.8MeV-25mA / RFQ	-	Epi-th	Multi-P BNCT	Commissioning Planning
Cyc-BNCT Cyc-BNCT	CIAE @Tai'an	p-Be	14MeV-1mA/Cy-tron	>1×109	Epi-th	BNCT exp BNCT	Commissioning Planning
RFQ-BNCT	CNNC&THU @Chongqing	p-Li	2.7MeV-30mA/RFQ	>1×10 ⁹	Epi-th	BNCT	Planning
Cyc-BNCT	CBS & SHI @Bo'ao	p-Be	30MeV-1mA/Cy-tron	>1×10 ⁹	Epi-th	BNCT	Constructional
PAFA	SYSU @Zhuhai	p-Li	8MeV-10mA/p-linac	>1×10 ⁹	Epi-th	BNCT	Planning

- Clinical requirements and investment climate
- University, institution, or enterprise based organization?
- CANS technology: Reaction, accelerator type, and beyond

The other CANS projects in China

CCANS

Facility	Affiliation	Reaction	Accelerator	Yield(n/s)	Energy	Purpose	Status
5SDH-2	CIAE	Multi	1.7MeV×2-10µA Pelletron tandem	10 ⁶ ~10 ⁸	Fast	Metrology	Operational
Cyc-NS	CIAE	p-Be	18MeV-1mA/Cyc-tron 100MeV /Cyclotron	>10 ⁶ @sam		NR Fast	Commission
CPHS e-PNS	Tsinghua U	p-Be e-γ-n	13MeV-1.25mA/linac 9MeV/0.9kW/e-linac	5×10^{13} 2×10^{11}	Cold/Th Th	Multi-P NR(BiMo)	Operational Operational
PKUNIFTY BISOL	Peking U	D-Be D-Li	2MeV-0.4/3.5mA/RFQ 3~40MeV-25mA /linac	2.4×10 ¹¹ 2.5×10 ¹²	Th Fast	NR, Edu Sci-Res	Interval oper Design
CMIF(DGT)	CAS-IMP	D-Be	50MeV, 10mA RFQ+HWR (SC)	~10 ¹⁴	Fast	Material Irradiation	Commission
TMSR-PNS	CAS-SINAP	e-γ-n	15MeV-1.5kW/e-linac	~1×10 ¹¹	white	Nuc data	Operational
HINEG-I HINEG-II HINET-III/GDT NGs	INEST, CAS	D-T / DD	350keV-60mA / ES Cyclotron GDT ES	6.4×10 ¹² 10 ¹³ ~10 ¹⁴ ~10 ¹⁸ 10 ⁷ ~10 ^{8~10}	Fast/Th	Material Irradiation NR NAA	Operational Construction Design Developed
ZF-400 Compact	Lanzhou U	DD/DT DD/DT	400keV-40mA 120keV-3mA	5×10^{12} $1 \times 10^{8/10}$	Fast/Th	NAA	Developed
NR-FTY	CAEP-INPC	DT/DD DD	100~300keV-1~30mA 13MeV-0.5mA	3×10 ⁸ -10 ¹² 6.4×10 ¹¹	Fast/Th	NR, NAA	Developed
PAFA	SYSU	p-Li p-Be	2.5MeV-20mA/RFQ 8MeV-10mA/RFQ+DTL	-	Epi-th Fast	Nucl Phys Irradiation	Planning

CCANS

Summary & Discussion

- CANS projects have been rapidly increased recent years in China
- Requirements on BNCT, scientific research (BISOL, NS), energy(ADS, TMSR), NR, NAA, have been driving the development
- Series of technical progress have been made, provide the solid foundation of CANS projects
- Not only governmental fund, but also industrial investment have been interested in CANS projects
- > CANSs can collaborate with big facilities
- Not only construction, but also operation and application should be concerned

Thanks for Your Attention!

