

A NEW METHOD TO FIND OUT THE OPTIMAL NEUTRON MODERATOR SIZE BASED ON NEUTRON SCATTERING INSTRUMENT PARAMETERS

<u>Peter Konik^{1,*}</u>, Alexander loffe²

¹Neutron Spectroscopy Laboratory, HUN-REN Centre for Energy Research, Budapest, Hungary ²Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich GmbH, Germany

ICANS XXIV meeting

* Previous address: Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Germany

LET'S BUILD A NEW INSTRUMENT

- Given are sample size d_s and angular resolution α_s \triangleright
- \geq
- L_{in} and L_{out} are constraints No preliminary information about guide shape or coating (α_{in} , α_{out} , w_{in} , w_{out} are free parameters)

CHOICE OF MODERATOR

Why smaller moderator?

- Better target coupling
- ➤Less absorption

Increased briliance for pH2

Why larger moderator?

- Better thermalization
- ➢ Better guide entrance illumination

(but we don't know entrance size or required divergence)

One needs to determine the moderator size providing highest brilliance, full sample illumination and minimal background (over-illumination) at the sample

INSTRUMENT REQUIREMENTS

BEAM PROPAGATION

PHASE SPACE (PS) FOCUSING AT GUIDE EXIT

BEAM AFTER GUIDE EXIT

Phase space non-focusing guide

Ideal illumination conditions:

Full sample illumination (max flux)

 $\alpha_{out} = \alpha_S$

Minimal over-illumination (min BG)

 $w_{out} = 2L_{out} \tan \alpha_S - d_s$

Conditions are also true for PS-F case

GUIDE ENTRANCE

PS FOCUSING AT GUIDE ENTRANCE

PS-NF – accepted (= transported to guide exit) beam has no correlation

Almost any guide

PS-F – accepted beam has specific correlation, allowing to capture all neutrons from moderator

May be lens or Selene guide, but not necessarily

CURVES OF OPTIMAL AND FULL SAMPLE ILLUMINATION (COFSI)

If 3 conditions are fulfilled simultaneously:

- 1. Guide natural divergence equals the instrument resolution
- 2. Guide exit provides perfect sample illumination
- 3. Moderator provides just enough neutrons

+ we assume ideal transport $V_{in}=V_{out}$ (Liouville theorem)

= we can calculate D_{opt}

$D_{opt} =$		NTS entrance	
		F	NF
it	F	$\frac{2d_s\alpha_s L_{in}}{w_{in}}$	$\frac{2d_s\alpha_s L_{in}}{w_{in}} + w_{in}$
$NTS \ ex$	NF double-slit	$rac{2d_slpha_sL_{in}}{w_{in}}\cdotrac{n}{n-1}$	$\frac{2d_s\alpha_sL_{in}}{w_{in}}\cdot\frac{n}{n-1}+w_{in}$
	NF Soller or natural	$\frac{2d_s\alpha_sL_{in}}{w_{in}} + \frac{4\alpha_s^2L_{in}L_{out}}{w_{in}}$	$\frac{2d_s\alpha_sL_{in}}{w_{in}} + \frac{4\alpha_s^2L_{in}L_{out}}{w_{in}} + w_{in}$

COFSI is defined by only 4 parameters (sample size, resolution, distances)

COFSI EXAMPLES (I)

Brilliance-hungry instrument

Flux-hungry instrument

COFSI EXAMPLES (II)

COFSI EXAMPLES (III)

Traditional source

Compact source

WHAT HAPPENS WHEN ONE DEVIATES FROM COFSI?

Sample illumination conditions are still true

Useful sample flux reduced "Gothic-like structure" of divergence

DEPENDENCE OF BRILLIANCE FROM THE SOURCE SIZE

OPTIMIZATION EXAMPLE FOR TWO INSTRUMENTS AT PH₂ MODERATOR

Best solution is probably close to D_{opt} =18 mm:

- HR instrument reaches best performance
- LR instrument gets very high (not maximum) flux
- LR instrument sample under-illumination probably does not compromise its operation
- LR instrument guide entrance is larger than that of HR instrument

CONCLUSION

- > Moderator and guide entrance sizes both play key role in instrument design
- A method has been developed to find their optimal combination based only on 4 instrument parameters
 - Very fast and easy to use
 - MC calculations could be employed for better determination of guide PS type and to account for guide losses
- Hypothetical PS F-F guides potentially open possibility to use very small moderators with very high brilliance for all instruments

Konik, P., & Ioffe, A. (2023). A new method to find out the optimal neutron moderator size based on neutron scattering instrument parameters. *NIM A 1056, 168643*

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

THANK YOU FOR ATTENTION!

PARA-H₂ MODERATORS

- Low-dimensional para-H₂ moderators provide strong brilliance
- Studies from first sketches to conceptual designs for ESS and SNS STS, reactors and compact sources

Volume moderator

NIM A729 (2013) 500.

BRILLIANCE AND FLUX

Brilliance

B – how many neutrons the source emits from defined area in defined solid angle

Flux at sample position

$$\Phi_S = \int_0^d \int_{-\alpha}^{\alpha} B_s(D, w_0) d\alpha \, dd$$

It's all about instrument requirements (integration limits)!

"Brilliance-hungry" instruments

Sample size *d* increases

BRILLIANCE AND FLUX TRADE-OFF

High-brilliance cold moderators:

- □ Gain in flux on sample for **brilliance-hungry** instruments requiring highly collimated beams and small samples (reflectometer, SANS, ...)
- Not so advantageous for flux-hungry instruments with relaxed Q-resolution and larger samples (NSE, fundamental physics,...)

One needs to determine the moderator size providing highest brilliance, full sample illumination and minimal background (over-illumination) at the sample