

Ion sources used for neutron production developed at CSNS

Weidong Chen CSNS accelerator front-end group Nov. 1st, 2023

- Neutron production processes
- Ion sources developed in CSNS
 - Penning ion sources
 - **RF-driven H- source**
 - Electron Cyclotron Resonance (ECR) ion source
 - Hollow-cathode ion source
- Summary and outlook

Neutron production processes

Fusion/Fission used for neutron production

Exothermic reaction

 $D + D \rightarrow p + T + 4.032 \text{MeV},$ $D + D \rightarrow n + {}^{3}\text{He} + 3.266 \text{MeV},$ $D + T \rightarrow n + {}^{4}\text{He} + 17.586 \text{MeV}.$ D^{+}/D^{-} soure required.

Reactor

U+n→Ba+Kr+3n

Confined Fusion

Endothermic reaction ${}^{7}_{3}Li + {}^{1}_{1}H \rightarrow 2 \times {}^{4}_{2}He$ ${}^{7}_{3}Li + {}^{1}_{1}H \rightarrow {}^{7}_{4}Be + n$ ${}^{9}_{4}Be + {}^{1}_{1}H \rightarrow {}^{9}_{5}B + n$ p/H^{-} source required.

Neutron logs

Spallation

 p/H^- source required.

One proton with energy of 1.6 GeV bombarding on W target can produce $30 \sim 50$ neutrons.

China spallation neutron source

The front end of the CSNS accelerator

- The LEBT has 3 solenoids, initially designed for the former penning ion source.
- The penning source has been replaced by RF-driven H⁻ ion source in Sep. of 2021.
- The ion source produces 37~42 mA, and throttled to 12 mA by a collimator before RFQ.

Penning ion source

Structure of the penning ion source A clone of ISIS ion source

Maximum current: $50 \sim 60$ mA, Pulse width: 500us, Repetition rate:25Hz, Life time: $4 \sim 6$ weeks RMS Emittance: $\sim 0.8\pi \cdot mm \cdot mrad$. Less than 25 mA is within RFQ's acceptance

Percentage of accelerator breakdown time

Trans. Emittance- $0.8 \cdot \pi \cdot mm \cdot mrad$

Cesium issues

Shengjin Liu, Chinese Physics C, 2014

2.

- Silicon-nitride plasma chamber.
- Insulated by epoxy with high thermal conductivity.
- Glow discharge igniter in gas line.
- One pair permanent magnet for e-dumping (since 2021)
- Cs evaporator is used (since 2021, improved 2022)

- Axial B-field coil (since 2020)
- Cs injection system is used (since 2020).
- Remove cusp magnets (since 2021).

9

Why silicon nitride?

- High flexural strength (900 MPa)
- Relative high thermal conductivity (16~60 W/m.K)
- High heat shock (800 \degree C)

 $\rm Al_2O_3$ (left) and $\rm Si_3N_4$ (right) plasma chambers for thermal and mechanical test

Before epoxy filled

RF-driven negative hydrogen ion source.

Old LEBT with 3-solenoids, **1.65 meters** in length, **used in accelerator tunnel.**

New LEBT with 2-solenoids, **0.8 meters** in length, **tested in the lab.**

Typical operation parameter for user service and experimental study

	CSNS service	Test bench study	
Peak RF-power	31 kW	25~40kW	
H2 flow rate	21 SCCM	18~24 SCCM	
Repetition rate	25 Hz	25 Hz	
Plasma pulse width	680 µs	500~1000μs	
Beam pulse width	540 µs	100~600 μs	
H- peak current	37 mA	50~60mA	
Cs reservoir temp	80~87C	77~120°C	
Service cycle	>7700 hours		
Beam energy	50 keV	50 keV	
Norm. RMS emitt.	Not measured	<0.31π.mm.mrad	

LEBT-CT02

The ion source runs unattended. The routine maintenance includes gas bottle replacement, 50 kV insulation cleaning, gas/water line inspection, H₂ purifier change, and plasma emission spectra check.

Ion source beam current and target beam power from *May* 16th to July 15th 2023. When parameters reaches equilibrium in 30 minutes, the beam current output fluctuation is less than 1%.

RF-driven H- ion source

Cesium consumption measurement

The ion source is dismounted during summer maintenance. It was disassembled into pieces. All of the parts (except the cesium injection system) were put into a big bucket filled with water to collect all of the cesium.

The concentration of cesium is 0.12%, measured with an ICP-MS.

2021.09~2022.07: 380mg cesium is used in ~310 days of operation, which is a little higher than expected. The cesium oven temperature was raised from 85 °C gradually to 120 °C in 3 months to compensate saturation of H_2 purifier.

2022.08~2023.07: 97mg cesium is used in ~323 days of operation.

Cs⁺solution

Electron Cyclotron Resonance Ion Source

$$qBv = ma \rightarrow \omega_e = \frac{qB}{m_e} \frac{1}{\gamma}$$

Microwave frequency = *e* cyclotron frequency

Advantage:

- stronger ion beams
- high-quality ion beams
- high production rates
- long lifetime
- cost-effective

Electron Cyclotron Resonance Ion Source

Schematic diagram of the ECR ion source structure for BNCT02

Electron Cyclotron Resonance Ion Source

Partial operating parameters of BNCT01 and BNCT02 ECRIS[1,2]

BNCT01		BNCT02		
Frequency [GHz]	2.45	Frequency [GHz]	2.45	
Power of Magnetron [W]	1.5	Power of Magnetron [W]	1	
Output Energy [keV]	75	Output Energy [keV]	35	
RMS Emittance [πmm∙mrad]	0.197	RMS Emittance [πmm∙mrad]	0.2	
Beam Current	60 Hz 1ms : 45mA	Beam Current	200 Hz 3ms : 35.04mA	

[1] 欧阳华甫,肖永川,曹秀霞等.BNCT02加速器设计及离子源调试[J].白城师范学院学报,2022,36(05):1-8. [2] 欧阳华甫,肖永川,刘盛进等.BNCT加速器设计和调试[J].白城师范学院学报,2020,34(02):1-9.

Hollow cathode ion source

Glow discharge

- Compact CF35 flange interface
- Able to produce mA proton, pA-nA H- beam
- Suitable for atomic study and cyclotron accelerator
- Also used as plasma igniters for RF-driven sources.

Summary and outlook

- The penning ion source has a compact design, but short life time.
- The RF-driven H⁻ ion source with external antenna and Si₃N₄ chamber runs successfully in CSNS, with major maintenance interval more than 323 days, and availability nearly 100%
- ECR proton sources are also developed for BNCT application. It produces 35 beam current with 60% duty factor.
- The repetition rate of the CSNS ion source will be increased to 50 Hz for isotope-production in the future.

Thanks for your attention!

The International Collaboration of Advanced Neutron Sources (ICANS XXIV) CSNS front-end group.

