

Science and Technology Facilities Council

Neutrino Interactions and Future Experiments with GeV Neutrinos

Lu, Xianguo 卢显国 University of Warwick PKU HEP Seminar 18 April, 2023

Neutrino Mass

Beyond Standard Model Standard Model Pontecorvo-Maki-Nakagawa-Sakata $\begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ $\left(egin{array}{c}
u_e
ight)
u_\mu \end{array}
ight)$ PMNS matrix ± **Mass Ordering** Normal Inverted

PMNS Matrix

 θ_{12} : mixing between ν_1 and ν_2

 $\theta_{23}\text{:}$ mixing between ν_{μ} and ν_{τ}

 θ_{13} : if 0, effective 2 flavour mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \nu_1' \\ \nu_2' \\ \nu_3 \end{pmatrix} \qquad P(\nu_\alpha) + P(\nu_\beta) = 1$$

Antineutrinos

2-flavor oscillation

$$v_{\beta}$$

$$P(v_{\alpha}) + P(v_{\beta}) = 1$$

$$v_{\alpha}$$

Oscillation as a function of *time* line-in-**line** → same trivia

Antineutrinos

3-flavor oscillation

Oscillation as a function of *time* line-in-**plane** \rightarrow CP-violation possible

CP Violation

Neutrino oscillations depend on mixing parameters and mass differences.

 $\begin{aligned} c_{ij} &= \cos\theta_{ij} \\ s_{ij} &= \sin\theta_{ij} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \theta_{13} \neq 0 \to \delta_{CP} \text{ can be observed} \end{aligned}$

Appearance probability
of
$$\mathbf{v}_e$$
 in a \mathbf{v}_{μ} beam $P(\nu_{\mu} \to \nu_e) \simeq \sin^2 2\theta_{13} \sin^2 \Delta_{32} \left(\sin^2 \theta_{23} - \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \delta_{CP} \sin \Delta_{21} \right)$

CP-odd term

* neglecting matter effects

CP Violation

Neutrino oscillations depend on mixing parameters and mass differences.

 $\begin{aligned} c_{ij} &= \cos\theta_{ij} \\ s_{ij} &= \sin\theta_{ij} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \theta_{13} \neq \mathbf{0} \rightarrow \delta_{CP} \text{ can be observed} \end{aligned}$ Appearance probability of $\bar{\nu}_e$ in a $\bar{\nu}_\mu$ beam $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \simeq \sin^2 2\theta_{13} \sin^2 \Delta_{32} \left(\sin^2 \theta_{23} + \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2\sin \theta_{13}} \sin \delta_{CP} \sin \Delta_{21} \right)$

flip sign

 $\delta_{CP} \rightarrow CP$ violation

CP violation: electron flavor appears from muon-flavor neutrinos and antineutrinos differently.

* neglecting matter effects

Neutrinos Sources

Accelerator Neutrinos

Ad: K.-J. Plows and XL, Modeling heavy neutral leptons in accelerator beamlines, Phys.Rev.D 107, 055003 (2023).

" β decay" of energetic collision products (mostly ν_{μ} from π)

Atmospheric Neutrinos

Near Detectors

Water Cherenkov detector

Water Cherenkov detector

18 April, 2023

Source: http://www.ps.uci.edu/~tomba/sk/tscan/tl

Liquid argon Time Projection Chamber (LArTPC)

The New Impressive

Future oscillation experiments

This talk only on

* accelerator and atmospheric GeV- ν

✤ ν_{μ} flux*: ν_{μ} disappear, ν_{e} appear

Interaction inside nuclei

 $\Box v_{\mu e}$ Charged Current (CC) for v detection

 \Box GeV- ν interaction: ν **N** interaction embedded in *nuclei* (A)

Medium effects—source of systematics

- ✓ v energy reconstruction, event classification
- □ Through initial state, vertex, final state
- Fermi motion & nuclear potential
- NN correlations
 Multinucleon excitation
- Pauli-blocking
 FSI

Counting oscillated v

At *(far-)detector*, interactions *cannot* be measured with *unknown oscillated flux*

Measurement = (*flux* × *interaction*) \oplus **detector effects**

Detector

- * Near detectors for accelerator- ν experiments
- Non-accel: rely on externally constrained models
- Unconstrained flavour and/or target nuclei

No two unknowns at the same time

2

Medium

effects

□ Also *active target*

Tracking + calorimetry

Hydrogen target from CH-C subtraction: T. Cai *et al.* [MINERvA], Measurement of the axial vector form

factor from antineutrino-proton scattering, *Nature* 614, 48 (2023)

Hyper-Kamiokande

Current role in studying ν interactions \Box Largest data set

Systematic investigation cf. e.g. MINERVA, Eur. Phys. J. ST 230, 4243 (2021)

Detector

Cube assembly and fiber insertion ...

Weijun Li 利伟君 (Oxford/Warwick) January 2023, J-PARC

Detector

□ FD (Far Detector)

DUNE

- LArTPC (Liquid Argon TPC)
- ✓ Mass-scalable for tracking + calo

□ Near Detector ND-LAr

- Same technology as FD
- Near Detector ND-GAr (Gaseous)

Argon)—Reference Design

- ✤ 10-bar argon-based gas TPC
- ~100 m³ gas volume surrounded by calorimeter
- ✤ B-field provides sign selection
- ✓ Large statistics of v interactions on gas
- \checkmark 4 π acceptance, very low tracking threshold
- ✓ Arguably ultimate <u>exclusivity</u> for v interactions

DUNE, instruments 5, 31 (2021)

Exclusivity: to measure all final states (except nuclear remnant)

Vessel (200 L 10 bar) for high pressure TPC R&D @ WarTPC lab

Matt Snape (Warwick) and Philip Hamacher-Baumann (Aachen/Warwick) August 2022, Warwick

DUNE

ProtoDUNE

Detector

LArTPC Demonstrator at CERN for DUNE FD

□ Hadron beams of 0.3-7 GeV/*c*

- ✤ 4.7 mm wire spacing (same as FD)
- ✓ Versatile reconstruction in LAr

e/γ separation

DUNE

ProtoDUNE

Detector

LArTPC Demonstrator at CERN for DUNE FD

□ Hadron beams of 0.3-7 GeV/c

- ✤ 4.7 mm wire spacing (same as FD)
- Versatile reconstruction in LAr
- ✓ hAr interactions to constrain *v*-int. FSI
- ✓ *Exclusivity* + beam energy, can "see" inside argon nuclei

<u>Exclusivity</u>: to measure all final states (except nuclear remnant)

Exclusive event candidates

DUNE, JINST 15, P12004 (2020)

Kinematic fitting improves π^0 energy resolution from 13% to 10%

Kang Yang 杨康 (Oxford/Warwick)

SBND 20~30 × current world ν Ar data

***** Large statistics for v_{μ} and v_{e}

Detector

SBND

Detector

$20~30 \times \text{current world } \nu\text{Ar data}$

 3 mm wire spacing (same as MicroBooNE and ICARUS)

SBND

Detector

$20~30 \times current$ world νAr data

- 3 mm wire spacing (same as MicroBooNE and ICARUS)
- ✓ Proton tracking threshold ~ 40 MeV (277 MeV/c)
- ✓ Proton tagging at vertex

<u>Exclusivity</u>: to measure all final states (except nuclear remnant)

Detector limit can be pushed, but inside of a nucleus is never allowed...

PRISM (Precision Reaction Independent Spectrum Measurement)

Detector

Hyper-Kamiokande

□ FD: water Cherenkov

□ ND: IWCD (Intermediate Water Cherenkov Detector)

- ✤ Same technology as FD
- ✤ 50 m vertical shaft @ 750 m from beam source
 - ✓ 1°-4° off-axis (OA) angle ("PRISM Definition Part 1")

Medium effects

Hyper-Kamiokande

□ FD: water Cherenkov

□ ND: IWCD (Intermediate Water Cherenkov Detector)

- Same technology as FD
- ✤ 50 m vertical shaft @ 750 m from beam source
 - ✓ 1°-4° off-axis (OA) angle ("PRISM Definition Part 1")
- ✤ ~ 1% residual v_e/\bar{v}_e beam components
 - ✓ Large fraction at far-OA angle
 - ✓ Constrain v_e / \overline{v}_e (besides v_μ / \overline{v}_μ) cross sections on water (enabled by active γ shielding)

Medium effects

DUNE-PRISM

Medium effects

- ND-LAr & ND-GAr
- ✤ Up to 30 m off axis @ 574 m from beam source
 - ✓ 0°-3° off-axis angle
 - \checkmark E_v up to ~ 3 GeV, covering different interaction dynamics
 - ✓ **Probe energy-dependent medium effects**

DUNE, instruments 5, 31 (2021)

v_e/\bar{v}_e interactions

 $\Box \delta_{\rm CP}$ requires v_e and \bar{v}_e appearance

✓ Suppress v_e and \bar{v}_e bkg in beams

 \Box Need v_e/\bar{v}_e interaction data

- $\Box v_{\mu}-A + \text{lepton universality constrains} \\ v_{e}-A \text{ to } 1^{\text{st}} \text{ order precision}$
- □ Oscillation requires 2nd order precision
 - Higher statistics and better-understood fluxes

v_e / \bar{v}_e interactions

□ δ_{CP} requires v_e and \bar{v}_e appearance ✓ Suppress v_e and \bar{v}_e bkg in beams

□ Need $\nu_e / \bar{\nu}_e$ interaction data

- $\Box v_{\mu} A + lepton universality constrains$ $v_e - A to 1st order precision$
- □ Oscillation requires 2nd order precision
 - Higher statistics and better-understood fluxes

- Enhanced NeUtrino BEams from kaon Tagging (ENUBET)
 - v_e from e^+ tagging for $K^+ \to \pi^0 e^+ v_e$
 - ♦ ν_{μ} from μ^+ tagging
 - ✤ Flux uncertainty ~ 1%

v_e / \overline{v}_e interactions

□ δ_{CP} requires ν_e and $\bar{\nu}_e$ appearance ✓ Suppress ν_e and $\bar{\nu}_e$ bkg in beams

□ Need $\nu_e / \bar{\nu}_e$ interaction data

 $\Box v_{\mu} - A + lepton universality constrains$ $v_e - A to 1st order precision$

□ Oscillation requires 2nd order precision

 Higher statistics and better-understood fluxes
 pustopm arXiv:2203.07545

Workshop: Exploring the Physics Opportunities of nuSTORM, London, 6 April 2023

- \Box ν from STORed Muons (nuSTORM)
 - $v_{\mu}/\bar{v}_{e}/\bar{v}_{\mu}/v_{e}$ fluxes from μ^{\pm} decays
 - ✓ 1% or better flux precision

NMO with atmospheric v $\Box v$ energy & angle for *L/E*-variation

GeV-v interaction more critical and challenging

Future Oscillation Experiment	E _v /GeV	Detector Technology	Target Nuclei
IceCube Upgrade	3-10 (NMO sensitive region)	Cherenkov in ice	H ₂ O
KM3NeT/ORCA		WC	H ₂ O
Atmos-ν @JUNO		LS	CH _{1.6}

NMO with atmospheric v

 \Box ν energy & angle for *L*/*E*-variation

- No near detector
 - flux × interaction ambiguity
- □ Sensitive to new unknowns
 - E.g. unconstrained low-momentum proton production (450 MeV/c common tracker threshold)
 - Impact on very-low-threshold calo

Future Oscillation Experiment	E_{ν} /GeV	Detector Technology	Target Nuclei
IceCube Upgrade	3-10 (NMO sensitive region)	Cherenkov in ice	H ₂ O
KM3NeT/ORCA		WC	H ₂ O
Atmos-ν @JUNO		LS	CH _{1.6}

Dedicated GeV-v interaction measurements: MINERvA Medium Energy data

- \checkmark E_v peak at 6 GeV, tail up to 20 GeV
- ✓ CH and nuclear targets
- ✓ ~ 10 M-event data set

Atmospheric neutrino interaction products: big surprise (fixed) in a very popular event generator (Interesting story: <u>https://github.com/GENIE-MC/Generator/issues/226</u>)

Qiyu Yan 严启宇 (UCAS/Warwick)

Summary

Future oscillation experiments require surgical precision inside a black box

Awaiting the future

Detector Technology: neutrons

- ✓ *v* energy budget and event classification—missing piece for <u>exclusivity</u>
- Tagging and calorimetry exist
- 4-momentum determination on the verge (e.g. time of flight)

Medium effects

Analysis methods: ν -hydrogen interaction

- ✓ Complete removal of medium effects
- Established: statistical subtraction between targets
- Ideas: <u>exclusivity</u> + TKI event-by-event selection using mass-scalable H-based compounds

Model constr't

Ex situ interaction measurements: precise nuclear response

- ✓ Break flux × interaction ambiguity
- Electron scattering + <u>exclusivity</u> for initial-and final-state effects (not vertex)

BACKUP