

中國科學院為能物昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

2023年1-4月研究生考核报告

报告人:张 鹏 导 师:黄燕萍 实验物理中心高能量物理组

▶BESIII 分析

- $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta' 中 X(2370) 自旋宇称测量$
- $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \pi^+ \pi^- \eta' \oplus \pi_1(1600)$ 自旋宇称测量

- ▶ATLAS 分析
 - 电子和光子能量刻度修正
 - Early Run3 $H \rightarrow \gamma \gamma$ 衰变道基准截面测量
 - 双光子顶点选择效率研究

$J/\psi \to \gamma K_s^0 K_s^0 \eta' \, \mathrm{tr} X(2370) \, \mathrm{i} \, \mathrm{ker} \, \mathrm{smu} \, \mathrm{f}$

- ▶ 研究动机
 - 用分波分析方法测量 $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ 过程中的胶球候选者X(2370)的自旋宇称
- ▶ 研究进展
 - 已经完成完成Paper draft并提交给Referee Committee,并根据目前收到的评论 和建议,对draft做了相应地更新和修改
 - memo和draft链接:<u>DocDB-1077</u>, <u>HyperNews-BAM-00603</u>
 - 在不同 $M_{K_s^0K_s^0}$ cut下测试了分波解的稳定性
- ▶研究进展X(2370)的测量结果
 - $J^{pc} = 0^{-+}$
 - Mass =2395⁺¹¹₋₁₁(stat.)⁺¹¹₋₁₅(syst.) MeV/c^2 , Width =188⁺¹⁸₋₁₇(stat.)⁺¹²₋₂₁(syst.) MeV/c^2
 - $B[J/\psi \to \gamma X(2370), X(2370) \to f_0(980)\eta', f_0(980) \to K_s^0 K_s^0] = 1.32 \pm 0.22(stat.)^{+0.31}_{-0.25}(syst.) \times 10^{-5}$

▶ 下一步

• 继续完善Paper draft

PhysRevD.73.014516

$J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta' 中 X(2370) 自旋宇称测量$

$rac{}{\sim}$ 不同 $M_{K_s^0K_s^0}$ cut下的分波解

• 基于 $M_{K_s^0 K_s^0} < 1.10 \ GeV/c^2$ 的Nominal解,在不同 $M_{K_s^0 K_s^0}$ cut下进行分波分析,测试了 $M_{K_s^0 K_s^0}$ cut 对X(2370)参数的影响。对 $M_{K_s^0 K_s^0} < 1.15 \ GeV/c^2$ 时的分波解的检查显示,仍有显著性大于5 σ 的额外共振态,需要进一步优化分波解。

Cut	Changes of resonance parameters of $X(2370)$		
Cut	$\Delta M \ (MeV/c^2)$	$\Delta\Gamma~(MeV/c^2)$	$\Delta \mathcal{B}/\mathcal{B}$ (%)
$M_{K^0_S K^0_S} < 1.05 \ GeV/c^2$	+19	+9	+12.79
$\overline{M_{K^0_S K^0_S} < 1.15 ~GeV/c^2}$	-11	+39	-32.11

在不同 $M_{K_s^0 K_s^0}$ cut下的分波分析中 都测得X(2370)自旋宇称为0⁻⁺

> 分波分析投影图

 $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \pi^+ \pi^- \eta' \oplus \pi_1(1600)$ 自旋宇称测量

- ▶研究动机
 - ${ { } t } \psi' \to \gamma \chi_{c1}, \chi_{c1} \to \pi^+ \pi^- \eta'$ 过程中测量混杂态候选者 $\pi_1(1600)$ 的自旋宇称
- ▶研究进展
 - 优化了η′候选者的选择方法
 - $\pi_1(1600)$ 自旋宇称的测量结果: $J^{pc} = 1^{-+}$
 - 正在撰写分析memo

▶下一步

 目前的分波分析程序中没有考虑分辨,准备通过拟合重建MC的π⁺π⁻η'不变质量谱提取出分辨, 并在分波分析中加以考虑

Atlas: 电子和光子能量刻度修正

- ▶ 在最终的R21 precision recommendation版本下, 验证基于Zee的能量刻度
 - 通过 $J/\psi \rightarrow ee$ 过程验证低横向动量区间下电子的能量刻度
 - 通过 $Z \rightarrow ll\gamma$ 过程验证光子的能量刻度
- → 基于 J/ψ → ee过程的电子能量刻度
 - •给出了电子的能量刻度修正因子随ŋ和E_T的分布
 - 更新了系统误差估计方法,给出了系统误差测量结果
 - 给出了考虑Linearity correction后的能量刻度修正因子
 - 电子能量刻度修正因子与基于Zee的能量刻度的误差符合得很好
 - 与之前版本precision recommendation相比,变化符合预期

uniformity

corrections

ADC non-

linearity

correction

LAr gain intercalibration $Z \rightarrow ee$

resolution

smearing

 $Z \rightarrow ee$

scale

calibration

Photon

calibrated

ely

energy

Linearity fit

Linearity correction

training o

MC-based

e/y calibration

LAr

longitudinal

layer inter-

calibration

MC-based

e/y energy

calibration

simulation

EM

cluster

energy

 $\chi^2/ndof=0.69$

Atlas: 电子和光子能量刻度修正

▶基于Z → llγ过程的光子能量刻度修正

- 修复了分析包中pileup weight的计算错误
- $对 Z \rightarrow eey \pi Z \rightarrow \mu\mu\gamma$ 两个道联合测量,给出了转化光子、非转化光子的能量刻度修正的分布,并测量了系统误差
- 比较光子能量刻度修正因子与基于Zee的能量刻度的误差
- 给出了考虑Linearity correction后的转化光子、非转化光子能量刻度修正因子

▶相关电子/光子能量刻度结果在<u>Egamma Calibration</u>会上给了7次报告,并将作为Full Run2 EGamma energy calibration 的交叉检验,预计今年发表文章

Run3 $H \rightarrow \gamma \gamma$ 衰变道基准截面测量

- ➤研究动机: Hyy截面测量对研究希格斯玻色子的属性非 常重要
- ▶本轮分析使用Run 3 data @ 13.6 TeV, 并且Athena 版 本更新到Release 22, 测量结果与标准模型预测值一致:
 - $\sigma_{fid}(pp \rightarrow H \rightarrow \gamma\gamma) = 76^{+14}_{-13} fb$
 - $\sigma(pp \to H) = 67^{+13}_{-12} \, pb$
- ➢ 担任<u>supporting note</u>编辑; 验证了双光子顶点选择的效率[Report <u>link1,2</u>]; 在截面测量部分, 提供了基准截面的最终测量结果, 以及误差的拆分和估计[Report <u>link1,2</u>], 并在<u>Higgs Group Plenary Meeting</u>上报告了 unblinded结果。

▶文章发表计划:已经发表一篇<u>CONF note</u>

双光子顶点选择效率

Production mode	Hardest vertex	NN vertex	Case1	Case2	Case3
ggF	52.16	71.54	98.17	84.15	64.52
VBF	67.34	75.96	98.00	83.53	71.21
W^-H	86.99	88.31	98.32	87.80	87.61
W^+H	87.76	88.67	98.60	87.83	88.07
$gg \rightarrow ZH$	89.64	89.81	98.80	88.88	89.36
$q\bar{q} \rightarrow ZH$	80.45	84.31	98.40	87.14	81.88
tĪH	99.55	95.21	99.00	90.85	96.41

- ▶研究动机
 - *H* → γγ系统不变质量的测量和初始顶点位置关系密切,因此正确地选择初始顶点至关重要。
- ▶ 目前的顶点选择算法
 - 将事例分为如下3类:
 - ✓ 至少一个光子转换为电子对,且径迹与重建初始顶点关联。(6%)
 ✓ 至少有一个转换光子,其径迹在硅探测器中有击中点。(26%)
 - ✓ 两个光子均未转换。(68%)
 - 对第一类事例,选择Hardest顶点作为初始顶点;第二、三类事例,用神经网络算法选出的顶点作为初始顶点。
 - 测量了Higgs不同产生模式下顶点选择(Hardest和NN顶点)的效率,以及选择效率随事例堆叠的分布。
- ▶ 顶点选择算法的验证
 - •利用 $Z \rightarrow ee$ 过程的蒙特卡洛样本和真实数据模拟 $H \rightarrow \gamma \gamma$ 过程, 对重建算法进行了验证。
 - 在对 p_T^{ee} 分布重新加权重后, $H \rightarrow \gamma \gamma \pi Z \rightarrow ee$ 过程的选择效率 分布符合得很好。

双光子顶点选择效率

▶双光子顶点选择的优化

- 目前 HGam 分析组使用的是基于 TMVA的神经网络算法(NN)选择双光子顶点
- 尝试了新的训练方法(XGBoost, 添加其它训练变量等), 使用Run3数据进行训练
- 基于XGBoost,使用相同训练变量,双光子顶点选择效率相比之前变化不大,仍需进一步优化 $✓ \epsilon = N(\Delta Z < 0.3 \text{ mm})/N(total)$

 $\checkmark \Delta \mathbf{Z} = Z_{PV}^{selected} - Z_{PV}^{truth}$

Efficienc	cy NN	XGBoost		
lardest case1		98.17%		
case2	84.15	% 85.11%		
case3	64.52	% 63.98%		
Inclusiv	e 71.54 ^o	% 71.52%		

▶BESIII 分析

- $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta' + X(2370)$ 自旋宇称的测量
 - ✓ 已经将Paper Draft提交给Referee Committee,并根据收到的评论做出了相应修改(DocDB-1077)
- $\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \pi^+ \pi^- \eta' \pitchfork \pi_1 (1600)$ 自旋宇称测量

✓正在撰写分析memo

≻ATLAS 分析

- 电子和光子能量刻度修正
 - ✓ 基于最终的R21 precision recommendation, 给出了能量刻度修正,结果将作为Full Run2 EGamma energy calibration 的交叉检验
- Run3 $H \rightarrow \gamma \gamma$ 衰变道基准截面测量

✓ 担任内部文章编辑,提供了基准截面的最终测量结果,已经发表一篇<u>CONF note</u>

• 双光子顶点选择效率

- ✓测量了Higgs不同产生模式下基于神经网络的顶点选择的效率
- ✓ 寻找其它训练变量,优化训练模型,提高顶点选择的效率

Thanks!

$J/\psi \rightarrow ee$: Scale results

Final version of

- \succ Obtained the Energy scale factors w/o linearity correction as a function of the electron η or E_T
 - The error bars on the black dots represent the total uncertainty

$Z \rightarrow ll\gamma$: Differential photon energy scale factor

Differential photon energy scale factor

without Linearity correction

$Z \rightarrow ll\gamma$: Differential photon energy scale factor

> Differential photon energy scale factor

with

Linearity

 $J/\psi \to \gamma K_s^0 K_s^0 \eta' 分析$

▶目前的分波解

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0^-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0-+	$f_0(980)\eta'$	1844	192	$> 20\sigma$
X(2750)	0^-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0^-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
PHSP	0-+	$\eta'(K^0_S K^0_S)_{S-wave}$			9.0σ
		$\eta'(K^0_S K^0_S)_{D-wave}$			16.3σ

Projection of combined channel: $\eta' \rightarrow \pi^+ \pi^- \eta$ and $\eta' \rightarrow \gamma \rho^0$

≻X(2370)的测量结果

- $J^{pc} = 0^{-+}$
- Mass =2395⁺¹¹₋₁₁(stat.)⁺¹¹₋₁₅(syst.) MeV/c^2 , Width =188⁺¹⁸₋₁₇(stat.)⁺¹²₋₂₁(syst.) MeV/c^2
- $B[J/\psi \to \gamma X(2370)] * B[X(2370) \to f_0(980)\eta'] * B[f_0(980) \to K_s^0 K_s^0] = 1.32 \pm 0.22(stat.)^{+0.31}_{-0.25}(syst.) \times 10^{-5}$

Diphoton vertex

Categorization and training variables

The events are categorized into 3 cases by following algorithm:

- Case1: At least one photon converting into e^+e^- pairs and leading to tracks that are associated to a reconstructed primary vertex. (The fraction of such events in the total events is 6%)
- Case2: At least one converted photon with tracks containing hits in the silicon detectors. (26%)
- Case3: Both photons unconverted or associated to tracks containing only hits in the TRT. (68%)

≻NN selection:

- ✓ $(Z_{common} Z_{vertex})/\sigma_Z$, where Z_{vertex} is the position of the primary vertex; σ_Z is the associated error. ✓ $\Delta \phi(\gamma \gamma, vertex)$, the azimuthal angle between the diphoton system and system defined by the vector sum of the tracks associated to the vertex.
- $\checkmark \log(\Sigma p_T)$, the scalar sum of transverse momenta of the tracks associated to the vertex.
- ✓ log (Σp_T^2), idem with p_T^2 instead of p_T

Diphoton vertex selection efficiency

Figure 3.1: Efficiencies for selecting the correct primary vertex as a function of (a) pile-up, (b) number of primary vertices, (c) the $\sum p_T$ and (d) $\sum p_T^2$ when considering neural network algorithm. In each plot, the dashed blue histogram shows the distribution of the variable. Case1/2/3 are defined in the text.

Ranking plots

- Largest systematic uncertainty is spurious signal
- Photon ID uncertainty is second largest uncertainty
 - Photon ID uncertainty significantly larger in Run 3, expected from EGamma pre-recommendations

SM cross-section prediction (theory):

- $\sigma_{fid}(pp \rightarrow H \rightarrow \gamma \gamma) = 67.5 \pm 3.4 \, fb$
- $\sigma(pp \rightarrow H) = 59.8 \pm 2.6 \, pb$

