

2023年1-4月季度考核

汇报人: 汪恒宇 导师: 阮曼奇 2023.04.23

Institute of High Energy Physics Chinese Academy of Sciences

- ▶ 采用液闪和钨的薄层分段式结构,通过薄片式 灵敏层设计,提高能量分辨率。
- ▶ 灵敏物质选用快发光的液闪,具有好的时间性 能。
- ▶ 读出方式采用SiPM侧端读出。
- ➢ 预期能量分辨率5%/√E。

不同ECAL单元结构下能量分辨取样项MC模拟结果					
ECAL Structure	Sampling Fraction	Sampling Term(%)			
LS:W = 100:100um	0.072	3.53			
Glass:W = 100:100um	0.146	2.88			
Csl:W = 100:100um	0.197	2.51			
Csl:W = 120:70um	0.292	1.94			

二.MC模拟物理结果

ECAL Structure: (**LS/100um+W/100um**) *100layers Using digitization tools: photons statistic (LS + SiPM).

SiPM gain = 1; σ_{gain} = 3; SiPM noise = 30

Energy Resolution 200p.e./mip

Geant4 Physics List : QGSP_BERT

Sampling Term VS Light Yield

Sampling Term VS Light Yield

LightYield (mip response) = 16000p.e./mip × SiPM Efficiency × SiPM Effective Area Fraction × Light Decay

三. 光学模拟结果

不同ECAL单元结构下SiPM光电子数估计						
序号	结构	SIPM表面有无空气	铝膜反射率(%)	光电子数(1个cell)		
1	液闪+铝膜	无	98	150		
	液闪+铝膜	无	80	11		
2	液闪+空气+铝膜	有	100	854		
	液闪+空气+铝膜	有	95	293		
	液闪+空气+铝膜	有	90	239		
	液闪+空气+铝膜	有	80	176		
3	液闪+空气+铝膜	无	100	2203		
	液闪+空气+铝膜	无	95	1336		
	液闪+空气+铝膜	无	90	1231		
	液闪+空气+铝膜	无	80	1144		
4	液闪+空气; 支撑+空气	无	100	1455		
	液闪+空气;支撑+空气	无	95	1266		
	液闪+空气;支撑+空气	无	90	1206		
	液闪+空气;支撑+空气	无	80	1134		
5	液闪+空气;支撑	无	100	1814		
	液闪+空气;支撑	无	95	986		
	液闪+空气;支撑	无	90	677		
	液闪+空气;支撑	无	80	416		

不同ECAL单元结构下SiPM光电子数估计

- ➢ 钨片表面全反射层对光子收集至关重要,相 对的,铝膜作用不大。
- 支撑结构表面做全反射层处理,对于低反射
 率反射层影响较大,对于高反射材料影响不大。

SiPM Efficiency = 25%

4

- 1. 设计了液闪-钨薄片型量能器方案
 - ➤ (液闪/100um+钨/100um)*100层, SiPM阵列侧端读出。
 - ➢ 预期能量分辨好于5%/√E。
- 2. MC模拟结果
 - ▶ 物理结果: 4-5%/√E @ 200p.e./mip
 - ➤ 光学模拟结果: ~1000p.e./mip
- 3. 下一步工作: 实验
 - ▶ 钨片表面处理工艺:全反射层制作。
 - ▶ 光收集测设。
 - ➤ SiPM阵列度读出电子学设计。
 - ▶ 单元mip信号测试。

2023.04.23

欢迎批评指正!