Holographic CME Current

Holographic QCD Seminar XIV

Generated by Midjourney

1.寻找和计算 CME 电流的困难 2.全息理论计算 CME 电流的一种思路 3.三点函数的一些结果和讨论

Yin, L., Hou, D., & Ren, H. C. (2021). Chiral magnetic effect and three-point function from AdS/CFT correspondence. *Journal of High Energy Physics*, 2021(9), 1-36.

Ohm's law Normal current Response to a Electric Field Chiral Magnetic Effect **CME** current Response to a Magnetic Field **Strong Magnetic Field A Physical System** Axial Current non-conservation: $\partial_{\mu} J_A \neq 0$

The anomaly system: QGP

Initial Stage Hydrodynamic Stage | 局域平衡态 **Kinetic Freeze-out**

带电原子核接近 光速的偏心碰产 生高强磁场 $\gg 10^{18}$ Gauss

Time

Pre-equilibrium Stage

Time Scale: ~ 10 femtoseconds (10^{-15} s) Length Scale: ~ 10 femtometers (10^{-15} m)

特征:在非常小的范围里;非常短的时间 内发生了剧烈和强劲的物理变化

Hadronization | Chemical Freeze-out

Difficulties in Finding the CME Current Signal

CME signal Background effects

CME signal

CME signal

Theoretical Prediction

Shi, S., Zhang, H., Hou, D. and Liao, J., (2020). Physical Review Letters, 125(24), p.242301. Kharzeev, D. E., McLerran, L. D., & Warringa, H. J. (2008). Nuclear Physics A, 803(3-4), 227-253. Skokov, V., Illarionov, A., & Toneev, V. (2009). International Journal of Modern Physics A, 24(30), 5925-5932. Bzdak, A., Koch, V., Liao, J., & Voloshin, S. (2012). Physics Letters B, 710(1), 171-175. Wang, G., Huang, X. G., & Yang, Y. (2019). Progress in Particle and Nuclear Physics, 107, 237-302.

.

Ι.

2.

3.

4.

5.

6.

.

Event-by-event fluctuations

Finite size effects

Magnetic field uncertainties

- V.S Elliptic Flow
- v.s Various Fluctuations in the Data
- v.s Extracting from Non-equilibrium

Real Situation in QGP V.S

Various Equilibriums

which kinds of equilibrium in high energy experiments?

Thermodynamic Equilibrium

Electromagnetic Equilibrium

Chiral Equilibrium

0 0 0 0 0 0

- Macroscopic Properties: Temperature, Pressure,, **Chemical Potential**
 - Local Equilibrium = Local Thermodynamic Equilibrium
- Spacetime-independent Electric and Magnetic Field
 - Charges and Currents are distributed in such a way that the fields are stable.
- Homogeneous and Stable Chiral Imbalance
 - The difference in the number of life-handed and righthanded quarks(anti-quarks) doesn't vary in spacetime

One Local Equilibriums & Two non-equilibrium

Electromagnetic non-Equilibrium

EM-field varies rapidly !

胶子场真空的非平庸涨落激发导致随机 的「手征不均衡」

QGP火球的剧烈迅猛演化

Local Thermodynamic Equilibrium

Hydrodynamic Stage

Long-wavelength Description works !

 $\mu_A =$

2

Chiral non-Equilibrium

Uniform Chiral Imbalance

Theoretical Challenges in CME

Electromagnetic non-Equilibrium

Local Thermodynamic Equilibrium

Strong-coupling

Chiral non-Equilibrium

- 1.
- 2. 自由能, 热力学参数(温度, 熵, 化学势, 轴化学势) ...
- 3. 各类关联函数,电极化率,磁化率...
- 4. 粘滞系数...

CME Current $J^{\mu}(q) = \Pi^{\mu\nu}(q) V_{\nu}(q) + J^{\mu}_{CME}(q)$

6.

.

Local Thermodynamic Equilibrium

Electromagnetic non-Equilibrium

Uniform Chiral Imbalance 可以定义 µ_A

Local Chiral Equilibrium

- 3.
- 4.
- 5.

 $J^{\mu}_{\rm CME}(q) = J^{\mu}(q) + J_{\rm AVV}(q)$

磁场具有时空依赖 $\vec{J} = 8C \mu_A \vec{B}$

Yee, H.-U. (2011). Journal of High Energy Physics, 2011(11), 1-18.

Landsteiner, K., Megías, E., & Pena-Benitez, F. (2011). Journal of High Energy Physics, 2011(09), 1-18. Landsteiner, K., Megías, E., & Pena-Benitez, F. (2013). Journal of High Energy Physics, 2013(05), 1-20. Bu, Y., Lublinsky, M., & Sharon, A. (2016). Part I. Journal of High Energy Physics, 2016(11), 1-42. Bu, Y., Lublinsky, M., & Sharon, A. (2017). Part II. The European Physical Journal C, 77, 1-17.

CME Current

 $J^{\mu}_{\rm CME}(q) = J^{\mu}(q) + J_{\rm AVV}(q)$

Local Thermodynamic Equilibrium

 $J^{\mu}_{AVV}(q) = \left[\frac{d^4 q_1}{(2\pi)^4} \frac{d^4 q_2}{(2\pi)^4}\right] (2\pi)^4$

Electromagnetic non-Equilibrium

Chiral non-Equilibrium

Furry 定理不起作用

$$\langle J_A^{\rho}(-k_1 - k_2) J_V^{\mu}(k_1) J_V^{\nu}(k_2) \rangle = \Delta^{\rho \mu \nu}(k_1, k_2)$$

 $q_1 = (\omega_1, \mathbf{q}_1)$ $q_2 = (\omega_2, \mathbf{q}_2)$

$$(2\pi)^4 \delta^4(q_1 + q_2 - q) \Lambda^{\mu\nu\rho}(q_1, q_2) A_{\rho}(q_2) V$$

Full AVV three-point correlation : $\Lambda^{\mu\nu\rho}(q_1, q_2) = \Delta^{\rho\mu\nu}(-q_1 - q_2, q_1)$

 $J_{V}^{\mu}(k_{1})$

$$J^{\rho}_A(-k_1-k_2)$$

Chiral Anomalies in $\mathcal{N} = 4$ SYM theory at large N_c and Strong `t Hooft Coupling $S = S_{\text{EH}} + S_{\text{MCS}} + S_{ct}$ $S_{\text{EH}} = \kappa_{\text{EH}} \int d^5x \sqrt{-g} (R - 2\Lambda)$

$$S = S_{\text{EH}} + S_{\text{MCS}} + S_{\text{c.t.}}$$

$$S_{\text{EH}} = \kappa_{\text{EH}} \int d^5 x \sqrt{-g} \left[R - 2\Lambda \right]$$

$$S_{\text{MCS}} = \kappa_{\text{M}} \int d^5 X \sqrt{-g} \left[-\frac{1}{4} F_V^2 - \frac{1}{4} F_A^2 \right] + \frac{\kappa_{\text{cs}}}{4\sqrt{2}\kappa_{\text{M}}\sqrt{-g}} \varepsilon^{MNOPQ} \left(3A_M F_{NO}^V F_{PQ}^V + A_M F_{NO}^A F_{PQ}^A \right)$$

$$(3A_M F_{NO}^V F_{PQ}^V + A_M F_{NO}^A F_{PQ}^A + \frac{\kappa_{\text{cs}}}{4\sqrt{2}\kappa_{\text{M}}\sqrt{-g}} \varepsilon^{MNOPQ} \left(3A_M F_{NO}^V F_{PQ}^V + A_M F_{NO}^A F_{PQ}^A \right)$$

$$J_{\rm V}^{\mu}(x) \equiv \frac{\delta S}{\delta V_{\mu}} = \left[-\kappa_{\rm M}(F_{\rm V})^{5\mu} \sqrt{-g} + \frac{3\kappa_{\rm cs}}{\sqrt{2}} \epsilon^{\mu\nu\rho\sigma} A_{\nu}(F_{\rm V})_{\rho\sigma} \right] \Big|_{\rm Ad}$$

$$\partial_{\mu}J^{\mu}_{V}(x) = 0$$

$$\partial_{\mu}J^{\mu}_{A}(x) = \frac{C}{3}\epsilon^{\mu\nu\rho\sigma} \left[3\left(F_{V}\right)_{\mu\nu}(F^{V})\right]$$

 $C = \frac{3\kappa_{\rm cs}}{4\sqrt{2}}$

$$J_{\rm A}^{\mu}(x) \equiv \frac{\delta S}{\delta A_{\mu}} = \left[-\kappa_{\rm M} (F_{\rm A})^{5\mu} \sqrt{-g} + \frac{\kappa_{\rm CS}}{\sqrt{2}} \epsilon^{\mu\nu\rho\sigma} A_{\nu}(F_{\rm A})_{\rho\sigma} \right]_{\rm Ad}$$

 $^{V})_{\rho\sigma} + (F^{A})_{\mu\nu}(F^{A})_{\rho\sigma} \bigg] \bigg|_{AdS-boundary}$

Troublesome Backreaction

$$\nabla_{N} \left[(\mathbf{F}^{\mathbf{V}})^{NM} \sqrt{-g} \right] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{\mathbf{CS}}}{\kappa_{\mathbf{M}}} \cdot \epsilon^{MNOPQ} (\mathbf{F}^{\mathbf{A}})_{NO} (\mathbf{F}^{\mathbf{V}})_{PQ}$$
$$\nabla_{N} \left[(\mathbf{F}^{\mathbf{A}})^{NM} \sqrt{-g} \right] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{\mathbf{CS}}}{\kappa_{\mathbf{M}}} \cdot \frac{1}{2} \epsilon^{MNOPQ} \left[(\mathbf{F}^{\mathbf{V}})_{NO} (\mathbf{F}^{\mathbf{V}})_{PQ} + (\mathbf{F}^{\mathbf{A}})_{NO} (\mathbf{F}^{\mathbf{A}})_{PQ} \right]$$

$$T_{MN} = \frac{2}{\kappa_{\rm M}} \frac{\delta S_{\rm MCS}}{\delta g^{MN}} \qquad \text{No coupling} \\ = (\mathbf{F}^{\rm V})_{M}^{L} (\mathbf{F}^{\rm V})_{NL} - \frac{1}{4} g_{MN} (\mathbf{F}^{\rm V})_{KL} (\mathbf{F}^{\rm V})^{KL} + q_{MN} (\mathbf{F}^{\rm V})^{KL} (\mathbf{F}^{\rm V})^{KL} (\mathbf{F}^{\rm V})^{KL} (\mathbf{F}^{\rm V})^{KL} + q_{MN} (\mathbf{F}^{\rm V})^{KL} (\mathbf$$

I. Freedman, D. Z., Mathur, S. D., Matusis, A., & Rastelli, L. (1999). Nuclear Physics B, 546(1-2), 96-118.

2. Policastro, G., Son, D.T., & Starinets, A. O. (2002). Journal of High Energy Physics, 2002(09), 043.

Bad News: $\{\kappa_{M}, \kappa_{FH}\} \rightarrow N_{c}^{2}$ as the large N_{c} limit !

constant $-(\mathbf{F}^{A})_{M}^{L}(\mathbf{F}^{A})_{NL} - \frac{1}{4}g_{MN}(\mathbf{F}^{A})_{KL}(\mathbf{F}^{A})^{KL}.$

Troublesome Back-reaction

Beyond the AdS/CFT Correspondence, the condition of large N_c limit can be relaxed

General Gauge/Gravity Duality:

A fixed Schwarzschild-AdS geometry and fluctuated gauge fields are obtained in this way Advantage of keeping the large N_c condition Super Yang-Mills Strong-cooling limit of QCD with temperatures AdS/CFT Correspondence

$$_{MN} - \frac{1}{2}g_{MN} - \Lambda g_{MN} = -\frac{\kappa_M}{\kappa_{EH}}T_{MN} \approx 0$$

引力和规范场的退耦合"窗口" No Probe Limit! $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, A_{\mu} = \bar{A}_{\mu} + A_{\mu}, V_{\mu} = \bar{V}_{\mu} + V_{\mu}$ Chern-Simons term $S_{cs} \sim \epsilon^{...} AFF$ 必然会有规范场的二级涨落贡献: CME"退耦合"的要点是任何规范场的二级涨落不影响 bulk 时空几何 背景有矢量规范场的power-structure: e.g. $V_0 \neq$

- $O(\mathbb{V}) + O(h\mathbb{V}) = 0$ $O(\mathbb{A}) + O(h\mathbb{A}) = 0$ O(h) = 0Vector gauge field :
 - Axial gauge field :
 - Metric field :
 - 引力场一级涨落 h 和背景规范场的一级

$$\nabla_{N}[(F^{V})^{NM}\sqrt{-g}] = -\frac{3}{2\sqrt{2}}\frac{\kappa_{CS}}{\kappa_{M}} \cdot \epsilon^{MNOPQ}(F^{A})_{NO}(F^{V})_{PQ}$$

$$\nabla_{N}[(F^{A})^{NM}\sqrt{-g}] = -\frac{3}{2\sqrt{2}}\frac{\kappa_{CS}}{\kappa_{M}} \cdot \frac{1}{2}\epsilon^{MNOPQ} \left[(F^{V})_{NO}(F^{V})_{PQ} + (F^{A})_{NO}(F^{V})_{PQ} + (F^{A})$$

引力和规范场的退耦合"窗口" No Probe Limit ! Chern-Simons term $S_{cs} \sim \epsilon^{...} AFF$ 必然会有规范场的二级涨落贡献: 背景无任何规范场的 power-structure: $(\overline{A} = \overline{V} \equiv 0)$

Vector gauge field : Axial gauge field : Metric field :

 $\mathcal{O}(\mathbb{V}) + \mathcal{O}(h\mathbb{V}) = \mathcal{O}(\mathbb{AV})$

度规场的一级涨落和规范场的二级涨落同阶!

非线性涨落规范场的领头项行为和引力场退藕合 — CME 问题有望"可解"

 $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, A_{\mu} = \bar{A}_{\mu} + A_{\mu}, V_{\mu} = \bar{V}_{\mu} + V_{\mu}$

 $\mathcal{O}(\mathbb{A}) + \mathcal{O}(h\mathbb{A}) = \mathcal{O}(\mathbb{A}^2) + \mathcal{O}(\mathbb{V}^2)$ $\mathcal{O}(h) = \mathcal{O}(\mathbb{V}^2) + \mathcal{O}(\mathbb{A}^2)$

只要体理论背景解没有 规范场,那么度规场的 涨落只和规范场的三级 涨落发生backreaction!

CME Holographic Set-upLeading term of CS-Sector
$$S_{MCS} = \kappa_M \int d^5 X \sqrt{-g} \left[-\frac{1}{4} F_V^2 - \frac{1}{4} F_A^2 + \frac{\kappa_{cs}}{4\sqrt{2}\kappa_M \sqrt{-g}} e^{MNOPQ} (3A_M F_{NO}^N F_{PQ}^N + A_M F_{NO}^A F_{PQ}^A) \right]$$
 $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$, $A_{\mu} = \bar{A}_{\mu} + A_{\mu}$, $V_{\mu} = \bar{V}_{\mu} + V_{\mu}$ $\bar{V} = \bar{A} \equiv 0$ Schwarzschild-AdS₅ 时空Horizon $u = 1$ $ds_5^2 = \bar{g}_{MN} dx^M dx^N = \frac{(\pi LT)^2}{u} \left(-f(u) dt^2 + \sum_{i=1}^3 d(x^i)^2 \right) + \frac{1}{4u^2 f(u)} du^2$, $f(u) = 1 - u^2$ $\partial_N [\bar{g}^{NP} \bar{g}^{MQ} (\mathbb{F}^N)_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_M} \cdot c^{MNOPQ} (\mathbb{F}^N)_{NO} (\mathbb{F}^V)_{PQ} + (\mathbb{F}^A)_{NO} (\mathbb{F}^A)_{PQ} \right]$ 采用的AdS 边界条件:EM non-equilibrium: $\vec{V}(q)$ $u \rightarrow 0$ $q = (\omega, \bar{q})$

E Holographic Set-up | **Leading term of CS-Sector**

$$\sqrt{-s} \left[-\frac{1}{4}F_{V}^{2} - \frac{1}{4}F_{A}^{2} + \frac{\kappa_{cs} \text{ dimensionless}}{4\sqrt{2}\kappa_{M}\sqrt{-g}} e^{MNOPQ}(3A_{M}F_{NO}^{V}F_{PQ}^{V} + A_{M}F_{NO}^{A}F_{PQ}^{A})\right] \\
\xrightarrow{\text{Chern-Simons Sector}} h_{\mu\nu}, A_{\mu} = \bar{A}_{\mu} + A_{\mu}, V_{\mu} = \bar{V}_{\mu} + V_{\mu} \qquad \bar{V} = \bar{A} \equiv 0 \\
\text{d-AdS}_{5} \text{ BT2} \qquad \qquad \text{Horizon } u = 1 \\
\text{AdS-Boundary} \qquad u = 1 \\
\xrightarrow{\alpha_{5}^{2} = \bar{g}_{MN} dx^{M} dx^{N} = \frac{(\pi LT)^{2}}{u} \left(-f(u) dt^{2} + \sum_{i=1}^{3} d(x^{i})^{2} \right) + \frac{1}{4u^{2}f(u)} du^{2}, f(u) = 1 - u^{2} \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{N})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot e^{MNOPQ}(\mathbb{F}^{N})_{NO}(\mathbb{F}^{V})_{PQ} \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{N})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{NO}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{NO}(\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{A})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{NO}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{NO}(\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{A})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{NO}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{NO}(\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{A})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{NO}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{NO}(\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{A})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{NO}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{NO}(\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{MQ}(\mathbb{F}^{A})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{NO}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{NO}(\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{NQ}(\mathbb{F}^{A})_{PQ} \sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}} \frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2} e^{MNOPQ} \left[(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{PQ} (\mathbb{F}^{A})_{PQ} \right] \\
\xrightarrow{\alpha_{N} [\bar{g}^{NP} \bar{g}^{NQ} + (\mathbb{F}^{N})_{PQ} \sqrt{-\bar{g}}] = -\frac$$

$$\begin{aligned} \frac{1}{4}F_{A}^{2} + \frac{\kappa_{cs}}{4\sqrt{2\kappa_{M}\sqrt{-g}}} \frac{\text{dimensionless}}{e^{MNOPQ}(3A_{M}F_{N0}^{V}F_{PQ}^{V} + A_{M}F_{N0}^{A}F_{PQ}^{A})}{\text{Chern-Simons Sector}} \\ \mu + A_{\mu}, \nabla_{\mu} = \bar{\nabla}_{\mu} + \nabla_{\mu} \qquad \bar{\nabla} = \bar{A} \equiv 0 \\ \mu + A_{\mu}, \nabla_{\mu} = \bar{\nabla}_{\mu} + \nabla_{\mu} \qquad \bar{\nabla} = \bar{A} \equiv 0 \\ Horizon \ u = 1 \\ AdS-Boundary \ u = 1 \\ \mu + A_{\mu}^{N} = \frac{(\pi LT)^{2}}{u} \left(-f(u) dt^{2} + \sum_{i=1}^{3} d(x^{i})^{2} \right) + \frac{1}{4u^{2}f(u)} du^{2}, f(u) = 1 - u^{2} \\ \theta_{N}[\bar{g}^{NP}\bar{g}^{MQ}(\mathbb{F}^{V})_{PQ}\sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}}\frac{\kappa_{cs}}{\kappa_{M}} \cdot e^{MNOPQ}(\mathbb{F}^{A})_{N0}(\mathbb{F}^{V})_{PQ} \\ \theta_{N}[\bar{g}^{NP}\bar{g}^{MQ}(\mathbb{F}^{A})_{PQ}\sqrt{-\bar{g}}] = -\frac{3}{2\sqrt{2}}\frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2}e^{MNOPQ} \left[(\mathbb{F}^{V})_{N0}(\mathbb{F}^{V})_{PQ} + (\mathbb{F}^{A})_{N0}(\mathbb{F}^{A})_{PQ} \right] \\ \vdots \qquad \lim_{u \to 0} A_{\mu}(q \mid u) = \left(A_{0}(q), 0, 0, 0 \right) \qquad \underbrace{\text{EM non-equilibrium: } \overline{V}(q)}{\text{Chiral non-equilibrium: } A_{0}(q)} \end{aligned}$$

$$\begin{aligned} \frac{1}{4}F_{A}^{2} + \frac{\kappa_{cs}}{4\sqrt{2}\kappa_{M}\sqrt{-g}} \frac{\text{dimensionless}}{e^{MNOPQ}(3A_{M}F_{NO}^{V}F_{PQ}^{V} + A_{M}F_{NO}^{A}F_{PQ}^{A})} \\ \frac{1}{4\sqrt{2}\kappa_{M}\sqrt{-g}} \frac{e^{MNOPQ}(3A_{M}F_{NO}^{V}F_{PQ}^{V} + A_{M}F_{NO}^{A}F_{PQ}^{A})}{\text{Chern-Simons Sector}} \\ \mu + A_{\mu}, V_{\mu} = \bar{V}_{\mu} + V_{\mu} \qquad \bar{V} = \bar{A} \equiv 0 \\ Horizon \ u = 1 \\ AdS-Boundary \ u = 0 \\ \frac{1}{2} \frac{1}{4u^{2}f(u)} \frac{1}{4u^{2}f(u)} \frac{1}{4u^{2}} \frac{1}{4u^{2}}$$

CME Holographic Set-up Orders of CS-Sector $\lim_{u \to 0} \mathbb{V}_{\mu}(q \mid u) = (0, \overrightarrow{\mathbb{V}}(q)); \quad \lim_{u \to 0} \mathbb{A}_{\mu}(q \mid u) = (\mathbb{A}_{0}(q), 0, 0, 0)$ Horizon Conditions : in-falling boundary condition & Regularity of Action First Order Zeroth Order $\mathbb{A} = \mathscr{A} + \mathscr{O}(\kappa_{cs}) = \mathbb{A} + \mathscr{O}(\kappa_{cs}^2)$ Zeroth Order of CS-sector, 满足齐次Maxwell Eqn. $\mathbb{V} = \mathscr{V} + \mathscr{O}(\kappa_{cs}) = \mathbb{V} + \mathscr{O}(\kappa^{2})$ $\partial_N \left[\bar{g}^{NP} \bar{g}^{MQ} (\mathcal{F}^V)_{PQ} \sqrt{-\bar{g}} \right] = 0$ A Special CME current: $\mathscr{A}_{0}(q \mid u) \mid_{\vec{q}=0}$ $J^{\mu}_{CME}(x) = \left[-\kappa_{M}(\mathbf{F}_{\mathbf{V}})^{5\mu}\sqrt{-g} + \frac{3\kappa_{CS}}{\sqrt{2}} \epsilon^{\mu\nu\rho\sigma} \mathscr{A}_{\nu}(\mathbf{F}_{\mathbf{V}})_{\rho\sigma} \right] \Big|_{u-1}$ $\partial_N \left[\bar{g}^{NP} \bar{g}^{MQ} (\mathcal{F}^A)_{PQ} \sqrt{-\bar{g}} \right] = 0$ $\partial_0 \partial_5 \mathcal{A}_0 = 0; \ \partial_5^2 \mathcal{A}_0 = 0$ $A_0 = au + b$ a time-independent; b time-dependent.

CME Holographic Set-up Axial Chemical Potential

A Special CME current: $\mathscr{A}_{0}(q \mid u) \mid_{\vec{q} \to 0}$ $J^{\mu}_{CME}(x) = \left[-\kappa_{M}(\mathbf{F}_{\mathbf{V}})^{5\mu} \sqrt{-g} + \frac{3\kappa_{CS}}{\sqrt{2}} e^{\mu\nu\rho\sigma} \mathscr{A}_{\nu}(\mathbf{F}_{\mathbf{V}})_{\rho\sigma} \right] \mid_{\mu \to 0}$

 $\partial_0 \partial_5 \mathscr{A}_0(X) = 0; \ \partial_5^2 \mathscr{A}_0(X) = 0$

Axial chemical potential with gauge invariance

$$\mathcal{A}_0(q \mid u) \Big|_{\mathbf{q} \equiv 0} = \boldsymbol{\mu}_A \boldsymbol{u}$$

I. Gynther, A., Landsteiner, K., Pena-Benitez, F., & Rebhan, A. (2011). Journal of High Energy Physics, 2011(2), 1-17. 2. Rubakov, V.A. (2010). arXiv preprint arXiv:1005.1888.

Zeroth Order First Order $\mathbb{A} = \mathscr{A} + \mathscr{O}(\kappa_{\rm cs}) = \mathbb{A} + \mathscr{O}(\kappa_{\rm cs}^2)$ $\mathbb{V} = \mathscr{V} + \mathscr{O}(\kappa_{cs}) = \mathbb{V} + \mathscr{O}(\kappa_{cs}^2)$

$$\mathscr{A}_0 = au + b$$

a time-independent; b time-dependent.

 $\mu_A \to \int_{\text{Boundary: } u=0}^{\text{Horizon: } u=1} \partial_u A_0 \, \mathrm{d}u \equiv A_0 \Big|_{u=1} - A_0 \Big|_{u=0}$

CME Holographic Set-up Axial Chemical Potential

A Special CME current: $\mathcal{A}_0(q \mid u)|_{\vec{a} \to 0}$ $J_{\rm CME}^{\mu} = \left[-\kappa_{\rm M}(\mathbf{F}_{\mathbf{V}})^{5\mu}\sqrt{-g} + \frac{3\kappa_{\rm CS}}{\sqrt{2}}\epsilon^{\mu\nu\rho\sigma}\right]$ Axial chemical potential with ga Fourier 形式: $\mathcal{A}_{0}(q \mid u) \Big|_{\vec{q}=0} = (2\pi)^{4} \delta^{4}(q) \mu_{A} u \longrightarrow \mathcal{A}_{0}(q \mid u)$ $\mathbf{J}^{\mu}(q) = \left[-\kappa_{\mathbf{M}}(\mathbf{F}_{\mathbf{V}})^{5\mu}\sqrt{-g}\right]\Big|_{u\to 0} = \mu$ First-order 包含 Zeroth-order, 所以这一项有 µ_A

$$\left[\int_{u \to 0}^{\sigma} \mathscr{A}_{\nu}(\mathbf{F}_{\mathbf{V}})_{\rho\sigma} \right] \Big|_{u \to 0}$$

Zeroth Order First Order $\mathbb{A} = \mathscr{A} + \mathscr{O}(\kappa_{\rm cs}) = \mathbb{A} + \mathscr{O}(\kappa_{\rm cs}^2)$ $\mathbb{V} = \mathscr{V} + \mathscr{O}(\kappa_{\rm cs}) = \mathbb{V} + \mathscr{O}(\kappa_{\rm cs}^2)$

$$\mathcal{A}_{0}(q \mid 0) \Big|_{\vec{q}=0} \equiv \mathcal{A}_{0}(q) \Big|_{\vec{q}=0} = 0$$

CME Holographic Set-up | Two Kinds of Current

 $(\mathbb{A}_{0}(q), 0, 0, 0)$

 $\begin{aligned} \mathbf{AE stems from First-order of CS-sector}:\\ \dot{g}^{MQ}(\mathbf{F}^{V})_{PQ}\sqrt{-\bar{g}} &= -\frac{3}{2\sqrt{2}}\frac{\kappa_{cs}}{\kappa_{M}} \cdot \epsilon^{MNOPQ}(\mathbf{F}^{A})_{NO}(\mathbf{F}^{V})_{PQ}\\ \dot{g}^{MQ}(\mathbf{F}^{A})_{PQ}\sqrt{-\bar{g}} &= -\frac{3}{2\sqrt{2}}\frac{\kappa_{cs}}{\kappa_{M}} \cdot \frac{1}{2}\epsilon^{MNOPQ} \left[(\mathbf{F}^{V})_{NO}(\mathbf{F}^{V})_{PQ} + (\mathbf{F}^{A})_{NO}(\mathbf{F}^{A})_{PQ} \right] \end{aligned}$

CME Holographic Set-up | Chiral Non-equilibrium

 $\vec{q} = 0$ Spatial Homogeneity: Chira

Axial Field

$\vec{q} \neq 0$ Spatial Imhomogeneity: Chiral Non-Equilibrium

 $J^{\rho}_{A}(-k_1-k_2)$

 $J_{\text{AVV}}^{\mu}(q) = \int \frac{d^4 q_1}{(2\pi)^4} \frac{d^4 q_2}{(2\pi)^4} (2\pi)^4 \delta^4(q_1 + q_2 - q) \mathcal{J}^{\mu}(\dot{q}_1, q_2) \stackrel{\text{eeds } \vec{E}(q_1) \& \vec{E}(q_1) \& \vec{B}(q_1) \text{ 时空动力学}}{\stackrel{\text{--->}}{=} \text{手征不均衡的时空依赖 } A_0(q_2)$

 $J_{V}^{\mu}(k_{1})$

al Equilibrium
$$\mathscr{A}_0(q \mid u) \Big|_{\vec{q}=0} = (2\pi)^4 \delta^4(q)$$

Equations in Bulk

 $G_{v}^{M}(q|u) = \int \frac{\mathrm{d}^{4}q_{1}}{(2\pi)^{4}} \frac{\mathrm{d}^{4}q_{2}}{(2\pi)^{4}} (2\pi)^{4} \delta^{4}(q_{1}+q_{2}-q) \ \mathcal{G}_{v}^{M}(q_{1},q_{2}|u) \quad \Longrightarrow \quad \mathcal$

三点函数下,卷积"分化"出 EM 和 Chiral Imbalance 各自的时空动

 \mathcal{G}

$egin{array}{l} & q \mid u \ & v \ &$

CME Current Chiral Equilibrium

Homogeneous but non-static magnetic field condition:

The essence of CME is non-equilibrium

$$\vec{\mathsf{J}}(\mathfrak{w}) = 3\sqrt{2}\kappa_{cs}\,\mu_A\,\mathsf{B}(\mathfrak{w})\frac{\Gamma^2(\frac{1-i\mathfrak{w}}{2})\Gamma^2(\frac{3-i\mathfrak{w}}{2})}{\Gamma^2(1-i\mathfrak{w})}\int_0^1 \mathrm{d}u\,\left[\left(\frac{1-u}{1+u}\right)^{-i\frac{\mathfrak{w}}{2}}F\left(\frac{1-i}{2}\mathfrak{w}, -\frac{1+i}{2}\mathfrak{w}; 1-i\mathfrak{w}; \frac{1-u}{1+u}\right)\right]$$

 $\mathbf{J} \propto C_A \mathbf{B}$

若chiral equilibrium 和 EM equilibrium 同时成立, 那CME 电流将不存在

Heun Equation Changes into Hypergeometric Equation

考虑小动量{q₁;q₂}展开:

手征非平衡态CME电流的时间分量:

手征非平衡态CME电流的空间分量:

 ${\cal J}_{(0)}(q_1,q_2)$

Diffusive Structure

 $D_{(0)}(q) = i\mathfrak{w} - |\mathbf{q}|^2$

$$\begin{split} \mathcal{G}_{\mathrm{V}}^{5}(q_{1},q_{2}|u) &= -\frac{3}{\sqrt{2}} \frac{uf}{(\pi T)^{2}L} \frac{1}{|\mathbf{q}_{2}|^{2}} \mathcal{A}_{0}^{\prime\prime}(q_{2}|u) \left(\mathbf{q}_{2} \cdot \mathcal{B}(q_{1}|u)\right); \\ \mathcal{G}_{\mathrm{V}}^{0}(q_{1},q_{2}|u) &= \frac{3}{\sqrt{2}} \frac{1}{(\pi T)^{2}Lf} \frac{\mathfrak{w}_{2}}{|\mathbf{q}_{2}|^{2}} \mathcal{A}_{0}^{\prime}(q_{2}|u) \left(\mathbf{q}_{2} \cdot \mathcal{B}(q_{1}|u)\right); \\ \mathcal{G}^{V}(q_{1},q_{2}|u) &= -\frac{3}{\sqrt{2}} \frac{1}{(\pi T)^{2}Lf} \left[\mathcal{A}_{0}^{\prime}(q_{2}|u) \mathcal{B}(q_{1}|u) \\ &- \frac{\mathfrak{w}_{2}}{f |\mathbf{q}_{2}|^{2}} \mathcal{A}_{0}^{\prime}(q_{2}|u) |\mathbf{q}_{2} \times \mathcal{E}(q_{1}|u) - \mathrm{i} \, uf \frac{2\pi T}{|\mathbf{q}_{2}|^{2}} \mathcal{A}_{0}^{\prime\prime}(q_{2}|u) |\mathbf{q}_{2}| \end{split}$$

$$\mathcal{J}_{(0)}^{0}(q_{1},q_{2}) = 3\sqrt{2}\kappa_{_{\mathrm{CS}}} \frac{\mathsf{A}_{_{0}}(q_{2})\left(\mathbf{\mathfrak{q}}_{_{2}}\cdot\mathbf{B}(q_{1})\right)}{D_{(0)}(q)D_{(0)}(q_{2})}\mathbf{\mathfrak{w}}_{2}$$

$$) = -3\sqrt{2}\kappa_{\rm CS}\frac{\mathsf{A}_0(q_2)}{D_{(0)}(q_2)}i\mathfrak{w}_2\left[\mathsf{B}(q_1) + \frac{\mathsf{q}}{D_{(0)}(q)}(\mathsf{q}_2\cdot\mathsf{B}(q_2))\right]$$

Non-local Response

CME Current Infrared Behaviours

 $\mathbf{q}_2 = \{\mathbf{w}_2, \mathbf{q}_2\}$ proxies the dynamics of chiral imbalance in spacetime

For the case: $|\mathfrak{q}_2|^2 \ll \mathfrak{w}_2 \ll 1$

The opposite case:

 $|\mathfrak{w}_2 \ll |\mathfrak{q}_2|^2 \ll 1$

Match the weakly-coupled Field Theory

Match A Simple Model

Hou, D. F., Liu, H., & Ren, H. C. (2011). Journal of High Energy Physics, 2011(5), 1-24.

Rubakov, V.A. (2010). arXiv preprint arXiv:1005.1888.

当手征系统 $A_0(x)$ 在空间中变化缓慢, 则 $A_0(x) \sim \mu_A$, 三点函数的贡献和 μ_A 的贡献相当

 $\exists A_0(x)$ 在空间的分布改变剧烈;在时间的演化涨落急速,则 $|A_0(x)| \gg |\mu_A|$,手征非平衡态对CME电流的贡献巨大。

$$\mathcal{J}_{(0)}(q_1,q_2) \simeq -3\sqrt{2}\kappa_{\rm CS}^{}\mathsf{A}_0(q_2)\mathsf{B}(q_1)$$

$${\cal J}_{(0)}(q_1,q_2)\simeq 0$$

$$\vec{q} \times \vec{J}_{AVV}(q_1, q_2)$$

 $\vec{q} \cdot \vec{J}_{AVV}(q_1, q_2)$

$$\begin{aligned} & \text{CME Current } | \text{ Subleading Order of } q_{1,2} = \{\mathfrak{w}_{1,2}, \vec{\mathfrak{q}}_{1,2}\} \\ & \mathcal{J}(q_1, q_2) = 2(\pi T)^2 L\kappa_{cs} \Big[\int_{0}^{1} du \, (1-u^2) \mathcal{G}_{L}^{V}(q_1, q_2|u) \, \psi(q|u) \\ & \quad + \frac{\mathfrak{w} \, \mathfrak{q}}{|\mathfrak{q}|^2 D(q)} \int_{0}^{1} du \, u(1-u^2) \mathcal{M}(q_1, q_2|u) \, \phi(q|u) \\ & \quad + 3\sqrt{2}\kappa_{cs} \, \frac{\mathfrak{q}}{|\mathfrak{q}|^2} \mathsf{A}_0(q_2)(\mathfrak{q}_2 \cdot \mathfrak{B}(q_1)) - 3\sqrt{2}\kappa_{cs} \, \mathsf{A}_0(q_2) \mathfrak{B}(q_1) \\ & \text{All terms involving } \frac{\vec{\mathfrak{q}}_1 \cdot \vec{\mathfrak{q}}_2}{|\mathfrak{\mathfrak{q}}|^2} \text{ or } \frac{1}{|\mathfrak{\mathfrak{q}}|^2} \text{ are cancelle} \\ & \mathcal{J}(q_1, q_2) \simeq \mathcal{J}_{(0)}(q_1, q_2) + \mathcal{J}_{(1)}(q_1, q_2) \\ & = -3\sqrt{2}\kappa_{cs} \, \frac{\mathsf{A}_0(q_2)}{D_{(0)}(q_2)} \left\{ i\mathfrak{w}_2 \, \left[\mathfrak{B}(q_1) + \frac{\mathfrak{q}}{D_{(0)}(q)} \left(\mathfrak{q}_2 \cdot \mathfrak{B}(q_1) \right) \right] \\ & - \left[\left(2\mathfrak{w}_1\mathfrak{w}_2 + \mathfrak{w}_2^2 + 2i\,\mathfrak{w}_1|\mathfrak{q}_2|^2 \right) \frac{\ln 2}{D_{(0)}(q_2)} + \frac{\pi^2}{12} \left(|\mathfrak{q}_1|^2 + |\mathfrak{q}|^2 \right) \right] |\mathfrak{q}_2|^2 \, \mathfrak{B}(q_1) \\ & - \left[\frac{\pi^2}{12} |\mathfrak{q}_2|^2 + \left(\frac{\mathfrak{w}^2}{2} + \frac{i\mathfrak{w}}{2} |\mathfrak{q}|^2 - (|\mathfrak{q}|^2)^2 \right) \frac{\ln 2}{D_{(0)}(q)} + \left(\frac{\mathfrak{w}^2}{2} + \frac{\mathfrak{w}_2}{2} |\mathfrak{q}_2|^2 - (|\mathfrak{q}_2|^2)^2 \right) \frac{\ln 2}{D_{(0)}(q_2)} \\ & + \left(\frac{1}{2}\mathfrak{w}_1\mathfrak{w}_2 \ln 2 + i\mathfrak{w}_2 |\mathfrak{q}_2|^2 \ln 2 - \mathfrak{w}|\mathfrak{q}|^2 \ln 2 + \frac{\pi^2}{8} i\mathfrak{w}_1|\mathfrak{q}_1 \right|^2 \right) \right] \frac{\mathfrak{q}}{D_{(0)}(q)} (\mathfrak{q}_2 \cdot \mathfrak{B}(q_1)) \\ & - \left(- \frac{\pi^2}{8} i\mathfrak{w}_2 + \frac{\pi^2}{12} |\mathfrak{q}_2|^2 \right) \, \mathfrak{q}_2 \times \left(\mathfrak{q}_1 \times \mathfrak{B}(q_1) \right) - i\ln 2 |\mathfrak{q}_2|^2 \left(\mathfrak{q}_2 \times \mathfrak{E}(\mathfrak{q}_1) \right) \right\}. \end{aligned}$$

$$\begin{aligned} & \text{CME Current } | \text{ Subleading Order of } q_{1,2} = \{\mathfrak{w}_{1,2}, \vec{\mathfrak{q}}_{1,2}\} \\ & \mathcal{J}(q_1, q_2) = 2(\pi T)^2 L\kappa_{CS} \Big[\int_0^1 du \, (1-u^2) \mathcal{G}_{L}^V(q_1, q_2|u) \, \psi(q|u) \\ & \quad + \frac{\mathfrak{w} \, \mathfrak{q}}{|\mathfrak{q}|^2 D(q)} \int_0^1 du \, u(1-u^2) \mathcal{M}(q_1, q_2|u) \, \phi(q|u) \\ & \quad + 3\sqrt{2}\kappa_{CS} \frac{\mathfrak{q}}{|\mathfrak{q}|^2} \mathsf{A}_0(q_2)(\mathfrak{q}_2 \cdot \mathfrak{B}(q_1)) - 3\sqrt{2}\kappa_{CS} \, \mathsf{A}_0(q_2) \mathfrak{B}(q_1) \\ & \text{All terms involving } \frac{\vec{\mathfrak{q}}_1 \cdot \vec{\mathfrak{q}}_2}{|\mathfrak{\mathfrak{q}}|^2} \text{ or } \frac{1}{|\mathfrak{\mathfrak{q}}|^2} \text{ are cancelle} \\ & \mathcal{J}(q_1, q_2) \simeq \mathcal{J}_{(0)}(q_1, q_2) + \mathcal{J}_{(1)}(q_1, q_2) \\ & = -3\sqrt{2}\kappa_{CS} \frac{\mathfrak{A}_0(q_2)}{D_{(0)}(q_2)} \left\{ i\mathfrak{w}_2 \left[\mathfrak{B}(q_1) + \frac{\mathfrak{q}}{D_{(0)}(q)} \left(\mathfrak{q}_2 \cdot \mathfrak{B}(q_1) \right) \right] \\ & - \left[\left(2\mathfrak{w}_1\mathfrak{w}_2 + \mathfrak{w}_2^2 + 2i \, \mathfrak{w}_1 |\mathfrak{q}_2|^2 \right) \frac{\ln 2}{D_{(0)}(q_2)} + \frac{\pi^2}{12} \left(|\mathfrak{q}_1|^2 + |\mathfrak{q}|^2 \right) \right] |\mathfrak{q}_2|^2 \, \mathfrak{B}(q_1) \\ & - \left[\frac{\pi^2}{12} |\mathfrak{q}_2|^2 + \left(\frac{\mathfrak{w}^2}{2} + \frac{i\mathfrak{w}}{2} |\mathfrak{q}|^2 - (|\mathfrak{q}|^2)^2 \right) \frac{\ln 2}{D_{(0)}(q)} + \left(\frac{\mathfrak{w}^2}{2} + \frac{\mathfrak{w}_2}{2} |\mathfrak{q}_2|^2 - (|\mathfrak{q}_2|^2)^2 \right) \frac{\ln 2}{D_{(0)}(q_2)} \\ & + \left(\frac{1}{2}\mathfrak{w}_1\mathfrak{w}_2 \ln 2 + i\mathfrak{w}_2 |\mathfrak{q}_2|^2 \ln 2 - \mathfrak{w}|\mathfrak{q}|^2 \ln 2 + \frac{\pi^2}{8} i\mathfrak{w}_1 |\mathfrak{q}_1|^2 \right) \right] \frac{\mathfrak{q}}{D_{(0)}(q)} (\mathfrak{q}_2 \cdot \mathfrak{B}(q_1)) \\ & - \left(- \frac{\pi^2}{8} i\mathfrak{w}_2 + \frac{\pi^2}{12} |\mathfrak{q}_2|^2 \right) \, \mathfrak{q}_2 \times \left(\mathfrak{q}_1 \times \mathfrak{B}(q_1) \right) - i \ln 2 |\mathfrak{q}_2|^2 \left(\mathfrak{q}_2 \times \mathfrak{E}(\mathfrak{q}_1) \right) \right\}. \end{aligned}$$

Summary

- 征平衡态对 CME 电流的贡献。
- 3. 手征非平衡态和电磁非平衡态产生的 CME 电流由三点函数贡献。
- 态和均匀极限下的轴矢量场。
- 5. 计算了CME 电流的三点函数小动量展开......

I. 从 Power Structure 的分析可发现 Large N_C limit 限制了 without backreaction 的调节方式, 建立了 SYM 框架内研究手征反常系统的方法。

2. 空间均匀的轴矢量场 $\mathscr{A}_0(X)$ 在 horizon 的取值代表了轴化学式, 这是手

4. 强耦合 CME 电流也有非平凡红外极限次序行为,轴化学式不是简单取静

Generated by Midjourney

