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Holography and magnetohydrodynamics with dynamical gauge fields
Yongjun Ahn, Matteo Baggioli, Kyoung-Bum Huh, Hyun-Sik Jeong, Keun-Young Kim, Ya-Wen Sun

Within the framework of holography, the Einstein—-Maxwell action with Dirichlet boundary conditions corresponds to a dual conformal field theory in presence of an external gauge field. Nevertheless,
in many real-world applications, e.g., magnetohydrodynamics, plasma physics, superconductors, etc. dynamical gauge fields and Coulomb interactions are fundamental. In this work, we consider
bottom-up holographic models at finite magnetic field and (free) charge density in presence of dynamical boundary gauge fields which are introduced using mixed boundary conditions. We
numerically study the spectrum of the lowest quasi-normal modes and successfully compare the obtained results to magnetohydrodynamics theory in 2 + 1 dimensions. Surprisingly, as far as the
electromagnetic coupling is small enough, we find perfect agreement even in the large magnetic field limit. Our results prove that a holographic description of magnetohydrodynamics does not
necessarily need higher-form bulk fields but can be consistently derived using mixed boundary conditions for standard gauge fields.
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Holography

Gravitational bulk
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Holography
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Boundary QFT

YES!



A typical example

- Temperature 1
- Charge BULK : S:fd%\/—g (R + 6 — —F2> : F=dA,
- Magnetic field 4

1 B B

ds? = — f(r) dt* +

dr? + 2 (da? + dy?)

f(r)

Ay (rt, %) ~ AD (¢, %)

BOUNDARY roee T

Assuming standard quantization

A=Ai(r)dt — —ydr + —xdy,
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What do we get on the other side?

A QFT with a conserved U(1) current in presence of an external gauge field

0,T" = F"J],
oI = 0.

Diffusion of
conserved charge

Hydrodynamics of |
the gauge sector

w = —iDk?




Is this everything we can do?

Unsatisfactory in
many physical
situations
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DYNAMICAL GAUGE FIELDS
COULOMB INTERACTIONS
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electromagnetism

plasmas

¢

plasmons

superconductors






Fancy Maxwell’s equations

Generalized global symmetries and dissipative magnetohydrodynamics

Saso Grozdanov, Diego M. Hofman, Nabil Igbal

Electromagnetism without gauge symmetries

The true global symmetry of U(1) electrodynamics is Y
actually something different. Consider the following an- v L J — 0 :
tisymmetric tensor

1
JHY = —ehvPo . (1.2) VA 7 1% po

It is immediately clear from the Bianchi identity (i.e. the

absence of magnetic monopoles) that V,J*” = 0. This ,
is not related to the conservation of electric charge, but On/y global symmetries

rather states that magnetic field lines cannot end. Better for hydrodynamics, etc...



Magnetohydrodynamics from holography

interacting plasma

Saso Grozdanov, Napat Poovuttikul

Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly
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What do they get?

Relativistic magnetohydrodynamics

Juan Hernandez, Pavel Kovtun

A QFT with a dynamical gauge field (dynamical E, B)

Alfven waves Magnhetosonic waves



Our questions/results

| | DEVIL,,
1.Where is the trick ? " DETAILS

2. Do we really need this fanciness ?

3. Is there another solution ? Yes! (£




Disclaimers

* The trick has been already revealed (we did not discover it ®)

* The other solution is known since more than 10 years (©)

But ...

[provocative]
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| DON'T ALWAYS READ PAPERS




Field theory break |

Let us start by considering the generating functional Z|g,,,. A,]|:

: 1
[ . /I)q) exp [’iS() (P) + ¢ /(1‘3:1: (AM.]# (®) + 5g#V‘T“V (@))] :
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Field theory break Il

1

Stot = Sm|guw, Ayl + /d?’zc\/—g —EFQ + A, JE |

Maxwell kinetic term + Legendre transform (coupling to external current)
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MAXWELL EQUATIONS




Field theory break Il

V(T + TE) = FY Jexin V,JE =0,
1
T = Ve + Il =0, eV Fs, = 0,
1% 1 Lo TV 1 2 v
Standard electromagnetism Tem =~ F, ———~F-g

A

4\




Into holography

Let us forget about higher form
Holographic Jump: symmetries and do our
homework as from textbook
electrodynamics

Song by The Movement

The Movement - Holographic Jump! -
YouTube

https://www.youtube.com » watch




[more details later] O I d b ut g O I d [Witten, Marolf-Ross, ...]

Boundary asymptotics : A, (r,t.7) ~ AV (t.2) + A (t,7) 7P,

r—00

4 )

v Ag)) (t.Z) + B ALD (t,7) = fixed.

- J

MIXED BOUNDARY CONDITIONS

p =0 — Lcorr + /ddacALO)J“
standard



First application

Building a Holographic Wr

Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz
Phys. Rev. Lett. 101, 031601 — Published 14 July 2008

Making a real holographic superconductor (2009)

[Many authors ...] On>
Example. w7
0.5- /) /
Holographic Superconductor Vortices 04 [/
Marc Montull, Alex Pomarol, and Pedro J. Silva g'z: ',,"
Phys. Rev. Lett. 103, 091601 — Published 26 August 2009 0'1; ’,',:’
v




Recent application

High Energy Physics - Theory
[Submitted on 15 Dec 2017 (v1), last revised 26 Nov 2018 (this version, v4)]

Holographic Plasmons

UIf Gran, Marcus Tornsd, Tobias Zingg

Maxwell equation

Continuity equation e(w) — 1+ dmio(w) wiw,
(Drude model) “
plasmon
w2 _ wz% —I— 62 k2 N light
. 2 k c/lwp



See also

Holographic Meissner Effect

Makoto Natsuume, Takashi Okamura

The holographic superconductor is the holographic dual of superconductivity, but there is no Meissner effect in the standard holographic superconductor. This
is because the boundary Maxwell field is added as an external source and is not dynamical. We show the Meissner effect analytically by imposing the
semiclassical Maxwell equation on the AdS boundary. Unlike in the Ginzburg-Landau (GL) theory, the extreme Type | limit cannot be reached even in the

e — o< limit where e is the U(l) coupling of the boundary Maxwell field. This is due to the bound current which is present even in the pure bulk Maxwell
theory. In the bulk 5-dimensional case, the GL parameter and the dual GL theory are obtained analytically for the order parameter of scaling dimension 2.

P
H
<.
|

®
)

_




Back to the higher-form trick

arXiv:2010.06594 [pdf, other] BN 10.1103/PhysRevD.103.026011

Authors: Oliver DeWolfe, Kenneth Higginbotham

Gravity

Electric Gauge Field
A

Electromagnetic
duality

Magnetic Gauge field
B

Regular BCs

—

Alternate BCs

—

Regular BCs

Field Theory

Global U(1) Symmetry

l Gauging

Dynamical U(1)
gauge field

>  Generalized symmetries and 2-groups via electromagnetic duality in
AdS/CFT

Hodge dual in the bulk
does not preserve the
boundary conditions !!

It changes them from
Dirichlet to mixed

Higher-forms are just a
fancy way to implement
mixed boundary conditions



On the shoulders of giants

1 6SOI1—S e
HM— _8VF,LL1/_|_JéLXt:Oj Hu — hell — _gF?"IJ’
A 5A, v

Our mixed boundary conditions

577 (L) _ Z(L) A Z(S)  Lambda parametrizes
! the EM coupling

 Notice the factors of
L L S
5JY ) (w? — k?) 21(42) + A 21(42). (WA2-kA2)

/ [back to this later]




Re-discovering the known

2 2 2 2 2 2
2 th 2\ ’ 4 47“h 2\
B? ) 1
T _ = u _F2
( Hm l 4\
Thermodynamic and mechanical Maxwell theory in 2+1 is scale invariant
pressure are not equal but not conformal invariant !!

What Maxwell Theory in D<>4 teaches us about scale and conformal invariance

Sheer EI-Showk, Yu Nakayama, Slava Rychkov




Magnetohydrodynamics

Step 1: EOMs

Step 2: constitutive
relations

Step 3: dynamical
matrix and QNMs

Vo (T + TEY) = FY Joxin s V.JE =0,
1
= Ve F" Jh =0, "1V Fy = 0,
TH = eulu” + p A" + meF’fy + I,
JH = pu“—V,,THW + v, }CMV::EFMV_MI%V’

A

M(w,k) -s4=0, det M(w,k) =0.

sao = {07, 6u'="Y, 6 =Y 5B}




Zero density and zero B

I's .
‘))) w=*vk—i— k?, W= —i—t 2
2 €E+p

where v = 9p/0de and I's = n/(e + p).

The stress tensor Nothing
sector is “trivial” 4 new here '
since decouples ‘ Sorry &



Zero density and zero B

( , O') k2 o . O 0

wlw+i1—) = W = —1 ) k
€e €e fim €e Op/ou
“EM waves” Damped charge diffusion

We see the effects of
polarization and screening
(dynamical EM in matter)




Screened EM waves

04 06 08
K/ T K/T

The photon is screened (skin effect). @ Numerical data (QNMs)
Just solve it for real w and complex k

- standard textbooks — 1% order hydro



Zero density and zero

0.00 001 002 003 004 0.05 0.06

K/ T

sound waves

shear diffusion

Im[ w]

T

0.00;
~0.02/

-0.04

~0.06/
~0.08/

~0.10}

0.

- -0.00001

- -0.00002
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EM waves

damped charge diffusion



Zero density and finite B

All dispersion relations remain of the same type
but the coefficients are strongly modified by BA2

W — ITUnmg k ) k2

Magnetosonic waves

[sound mode carries magnetic flux now]



Zero density and finite B
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Figure 2. Dispersion relations of the lowest QNMs at zero density (u/T = 0) and B/T? # 0. Top
and bottom panels are respectively for B/T? = 0.5, 1.



Finite density and finite B
(8) e+ 2P o

T wB\ow)pp  \Ow)pp\9T), B

- Longitudinal diffusive mode
- Shear diffusion becomes sub-diffusive
- EM waves and sound modes couple together (4 non-hydro modes)

(p? + B?0)

2 2

O- B 13 3 3 'S [ 'y

i — | — Q% = —— (0% — 2. 0%(p? — B?) + w? (2(e + 1 —ie.w))| .
[w (au+f ) p] 22 (et [p oo (p )+ w* (2(e + p)(o — i€e ))] )

0.25"

where €),, is the plasma frequency 20

q,2 015
o T 04100
Q2 " P 0.055_

P Ee(E —+ p) ' 0.00!




Finite density and zero B

2
{w(uﬂrig) Qf)] =0
€e

2/ 2 2 : - €e 2 . 0 - €e 2
o“/es > 407 ; small density) : w = —1— Q2 w = —i— 4+ 1— 7,
( /€ p y) o P €c o P
o
(0'2/62 < 49]2j ; large density) D ow = £, — 12—
€e
Small density = overdamped modes
Large density 2 underdamped modes
Finally, setting all the dissipative coefficients (e.g., o = 0) to zero, one finds
k2
sound waves . w2 = Q}% + 02 k?, we = Q]?; i . — EM waves

€e Um



~0.01}

k/T

-0.03"
0.000 0.005 0.010 0.015 0.020 0.025 0.030
K/ T

Figure 3. Dispersion relations of the lowest QNMs at finite density (u/T = 0.5). Top and bottom

panels refer respectively to B/T? = 0, 0.5.
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Figure 4. Lowest QNMs at finite density (u/7 = 5).
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Figure 6. Dispersion relation of the lowest QNMs. Left, center and right panels correspond respec-
tively to u/T = 0.57,0.62,0.65.



External gauge fields Dynamical gauge fields
Energy diffusion mode (2.43), Magnetosonic waves (2.31),
Gappless modes Subdiffusive mode (2.43), Shear diffusion mode (2.31),
Magnetic diffusion mode (2.33),
Gapped modes Cyclotron mode (2.44). Damped diffusion mode (2.33),
Damped charge diffusion mode (2.34).

Table 1. The low energy modes at zero density and finite magnetic field.

External gauge fields Dynamical gauge fields
Gappless modes Diffusion mode (2.45), Diffusion mode (2.35),

Subdiffusive mode (2.45), Subdiffusive mode (2.35),
Gapped modes Cyclotron mode (2.46). Gapped plasma modes (2.38).

Table 2. The low energy modes at finite density and finite magnetic field.




Large B limit

0.0
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Magnetohydrodynamics still works well

Large B limit

0.0

0.15/
. . £ 0.10/ 02
+ Interesting teatures Rouna] 2% Mihol —0.4
T 005 _0.6!
-0.10. ,
-0.15 o ~0.8
There seems to be an emergent P SR C
gapless mode with dispersion 8/ 77
W=k I 10 ] 0.00
05 005
Re[wy=g] o - Im[wg=0] _ ‘
An emergent photon??? r é;rko °10
-0.5| -0.15}
—1.0: ‘ , —0.203_ ____________ 1
0 2 4 6 8 10 0 2 4 6 8 10
B/ T? B/ T?

Figure 13. The real and imaginary part of the first non-hydrodynamic modes at density p/T =
(0.5,5) (upper panels, lower panels).



Unscreened photon

Figure 15. The emergent propagating photon at zero density, zero magnetic field and zero EM
coupling A/T" = 0.

In this limit we are decoupling the photon from matter
[no screening, no polarization] 2 emergent photon

This can be derived analytically [see paper]



Hydrodynamics breakdown

06"
0.5
0.4-
Vins s T g ]
1 100 -
i 02" 3
02" ] 0.1 E
00L 0.0 ——3
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0.08/¢
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Dshear T 0.04 | Drmag T
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Figure 16. Top: Speed and attenuation constant of magnetosonic waves. Bottom: The diffusion
constants of shear and magnetic diffusion. The colors correspond to A/T" = (0.1, 1, 10, 1000) (red,
green, blue, purple). The insets are a zoom in the low magnetic field regime.

We see a failure of the hydro
description only at large
magnetic field together
with large EM coupling.

We suspect the problem is
the EM coupling




Two more experiments

1
(1) “Alternative quantization”  II* — Xc‘?,,F’“’ +JL., =0, A — 00
1 N/2
(2) “bulk experiment” S = fd4wv —9 [R+ 6 — 1 (F?) / }

 Are (1) and (2) the same thing?

 What is the dual field theory
picture?




Th e i d e a [inspiration from holographic

models with broken translations]

Ay (rt, 7)) ~ AV (t,3) + AD (¢,2) r7P

T—00

Gravity Field Theory
A(O ! < il Standard quantization ' :. . :' > ’
(Dirichlet b.c.s) (N Vicse ' 4 i
| TN : 2
A(l) (t, :I_f) Alternative quantization P ‘

1<N<3 (Neumann b.c.s)




Hydrodynamic modes

1. Sound wave w:i\/a—Pk—z‘ il —
Oe 2 (6+P)
2. Shear diffus w=—i— =k’
. Shear diffusion e P
W = _iDn1ag k2

3. Magnetic diffusion

BB _Xpp_p2 o (p)?

Dmag —



Sound and shear diffusion
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Magnetic diffusion

0. 25 For FA2 with
0.25] : alternative b.c.s. the
' hydro formula works

0.24 ]
W - very well at small B
0.23

-7 S No surprise at large B

0.20}

0.15}

°
: .0 t2s e it does not since we
0.10} ® oo 0 °* o . are both at large
— magnetic field and
0.05¢ ) infinite EM coupling
0.00 . . . l - For FA4 we do not

0 20 40 60 80 100 120 140 know how to

B/ T? compute the
transport coefficients
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Magnetic diffusion from the bulk

N —1
L+ 0(B)

ON —3 ' h

Perturbative bulk
computation works
well for both models



Summary

Maxwell + mixed b.c.s. magnetohydrodynamics

[no need of fancy higher forms, sorry]



Future

What is the emergent physics at infinite electromagnetic coupling in 24 1 dimensions

and how can that be described (see [23] for earlier discussions on this point)?

Can we understand better the large B limit and in particular test the recent claims

made in [96] about magnetic diffusion?
Is there an emergent photon in the strong B regime?

What is the correct dual field theory interpretation of the higher-derivative F?? bulk

model? Which are the corresponding transport properties?

Are the modified boundary conditions giving the correct phenomenology of super-
conductors once the U(1) symmetry is spontaneously broken [97] (see for example
130])?




Coming (hopefully) soon

How to sit % on the boundary of AdS

with Hyun-Sik Jeong, Ya Wen Sun and Keung Young Kim
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+ Souna T T4

hound ext

(2.18)

free

3 4 Moo I o, i i g L
in which Ji = pmut+v* and J{ 4= Vo My . Jp .

while J}‘;‘mm q incorporates the polarization effects. We can decompose the polarization

refers to the current of free charges

tensor M#" and H"” with respect to fluid velocity as

MY = Pru” — PVl — P u,M

Y — yBh DY — yV DR — E;u/pupH 7 (219)

and can also be identified with My = 20pn/0F,,, H* = 20p/0F,,. In (3+1) dimen-
sions [50], the magnetization M in Eq.(2.19) becomes the magnetic polarization vector
M. The electric polarization vector P" and the magnetization M are associated with the

electric field E# and magnetic field B via the susceptibilities (ygr ., xBB). i-€.,

PF = xppE*, M = xBBB, (2.20)
with 5 5
UPm Pm
op = 2— =2—. 2.21
XEE 9E2’ XBB 9132 ( )

The physical meaning of D" and H are the electric displacement vector and
the magnetic H-field. This can be seen by re-writing Eq. (2.18) in terms of H"”
V,HW = JE + T, . (2.22)

free

Eq.(2.20) implies that D" and H are also proportional to the electric and magnetic field
E" and B via the following relations
, 1o . » 1 1 .
Dl = —EF + PF = e B, H=—-B—-M=—B, (2.23)
A A Hm
in which we have defined the electric permittivity ¢, and the magnetic permeability jiy,.
Using all the previous identities and definitions, we finally arrive at the following identities
1 1 1

= o — = -, 2.24
XBE = €= 1, XBB = 5 . (2.24)



