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Motivation: from holographic
hadrons to holographic nuclides



Why nuclides?

• Nuclides are a
strongly coupled
system of nucleons
(protons and
neutrons).

• Therefore, we can use
holographic tools to
describe them!

• What observables
can we study? In
principle, we will
start with the mass
spectrum.

Figure 1: Nuclide table
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How do we define nuclides in holography?

• We will follow the AdS/QCD lead:
• At the boundary: A nuclide is a collection of strong-interacting
SU(2) symmetric nucleons.

• At the bulk: Nuclides are dual to eigenstates coming from a
holographic potential.

• Corner stone: as in bottom-up AdS/QCD, the dilaton field will
capture the strong-interaction phenomenology.

Let’s see how we define hadrons in bottom-up holography!!
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How we describe hadronic spectrum in bottom-up holography

• Hadrons are organized in taxonomic structures called Regge
Trajectories (RT).

• These trajectories define the hadronic mass in terms of hadronic
numbers, such as spin, angular momentum, or excitation number.

• Each hadron is a point in these trajectories.
• RTs are a consequence of confinement.

• Holographic hadrons are dual to eigenstates coming from
holographic potentials:

V(z) = 1
4B

′2 − 1
2B

′′ +M2
5 e2 A(z)

With A(z) the warp factor, B(z) = ϕ(z)− β A(z), β related to
hadronic spin, ϕ(z) the dilaton field, and M5 the bulk mass
associated with the bulk fields dual to hadrons.

• ϕ(z) induces confinement.

4



Hadronic Identity: how we construct hadrons in bottom-up
models

• From the holographic dictionary: Bulk field conformal dimension
∆ ⇐⇒ dimension of the operator creating hadrons, i.e.,
∆ = dimOh = τ + L.

• This information is encoded into the bulk mass M5:

M2
5 R2 = (∆− p) (∆− p− 1+ β)

= (∆− p) (∆ + p− 4) .

Conclusion: the hadronic information is codified into the bulk
mass!
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Example: Soft wall model for light vector mesons

Light Vector Mesons (Phys. Rev. D 74 (2006) 015005)

AdS Bulk

dS2 =
R2
z2

(
dz2 + ηµν dxµ dxν

)
IH =

∫
d5x

√
−ge−κ2 z2LM

LM = − 1
4g2v

Fmn Fmn

Holographic Meson

−ϕ′′(z) + VSWM(z)ϕ(z) = M2
n ϕ(z)

VSWM(z) = 4 L2−1
4 z2 + κ2 z2

M2
n = 4κ(n+ L+1

2 ), n, L > 0,
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Example: Soft wall model for light vector mesons

Figure 2: Holographic potential for
vector mesons with κ = L = 1,
with the ground state and the first
excited states.

Figure 3: ρ meson trajectory with
M2
n = 4κ2(n+ 1), and κ = 0.465

GeV y L = 1. Experimental data are
taken from Particle Data Group.
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We will use the bulk mass M5 to define a given
nuclide via the conformal dimension, as in the

case of hadrons.
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Holographic nuclides



Main idea and starting points

• The nuclear interactions in the nuclear realm can be understood
as residual effects coming from strong interactions. Thus we will
use a dilaton field Φ(ζ) to model strong force in the nuclide.

• A Holographic nuclide, with spin p, having A nucleons: ⇐⇒ bulk
field with spin p.

• Twist operator τ ⇐⇒ Nuclide mass number A.
• For simplicity, we will have symmetric nuclides, i.e., A = 2 Z, in
S-wave (L = 0). =⇒ ∆ = A = 2 Z.

• The bulk mass will be defined as a function of the atomic
number Z of a given nuclide: M5 = M5(Z).
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Main idea and definitions

Geometric Setup
We start from

IBulk =
∫
d5x

√
−g e−Φ(ζ) LNuclide,

with

LNuclide =
(−1)p

2 ×[
1
g2p
gmn gm1 n1 . . . gmp np∇m Am1...mp ∇n An1...np

−M2
5 gm1 n1 . . .gmp np Am...mp An...np

]
.

p-form Ap will be associated with the nuclide at the boundary.
These fields live in the usual AdS Poincare patch:

dS2 = R2
ζ2

(
dζ2 + ηµν dxµ dxν

)
. 9



Dilaton Engineering

General Equations of motion

∂ζ

[
e−B(ζ) ψ′(ζ)

]
+M2

0 e−B(ζ) ψ(ζ)−
M2
5 R2
ζ2

e−B(ζ) ψ(ζ) = 0,

Holographic Potential
Constructed from the geometry and the dilaton, it will carry the
information about the nuclide mass spectrum

V(ζ,∆) =
15− 16∆+ 4∆2

4 ζ2 +
(3− 2p)
2 ζ Φ′ +

1
4 Φ′2 − Φ′′

2 .

The nuclide spectrum will be the ground state of V(ζ,∆).

We will consider three possible static dilaton profiles: Φ = 0 with a
hard cutoff, Φ ∝ ζ2 and a WS-like one.
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Let’s see how each model works!
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Hard Wall Approach



Hard Wall nuclide

• Inspired by the hadronic HW [See EPJC 32, 529–533 (2004) and
Phys. Rev. Lett 95, 261602, (2005)].

• Defined by imposing Φ(ζ) = 0 and a hard cutoff as
ΛN =

M4
2He

α2,1
= 0.7794 u.

• First kind Bessel zeroes give the mass spectrum:
M0(∆) = ΛN α∆−2,1.

Figure 4: Holographic potential for
potassium nuclide, ∆ = 36, p = 3.

Figure 5: Holographic Potential for
Nitrogen nuclide, ∆ = 14, p = 1.
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https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1103/PhysRevLett.95.261602


Light Nuclide mass spectrum (Experimental Data Huang 2021)

Experimental nuclide data HW-like Model
Z Nuclear Spin MExp

0 (u.) MTh
0 (u) Rel. Error (%)

2 0 4.00260 4.00260∗ 0.00
3 1 6.01511 5.91421 1.68
4 0 8.00530 7.74401 3.26
5 3 10.0129 9.52800 4.84
6 0 12.0000 11.2819 5.98
7 1 14.0030 13.0143 7.06
8 0 15.9949 14.7303 7.91
9 1 18.0009 16.4333 8.71
10 0 19.9949 18.1259 9.34
11 3 21.9944 21.4859 9.93
12 0 23.9850 23.1558 10.4

Parameters set: fitted with the Helium data. RMS error fitting 29
nuclides with one parameter: 11.6%. 13

https://iopscience.iop.org/article/10.1088/1674-1137/abddb0


Soft Wall Approach



Soft Wall Nuclide

• Inspired by the hadronic soft wall model [See Phys. Rev. D 74,
015005 (2006)].

• Defined by imposing Φ(ζ) = ∆
2 κ0 ζ

2, where κ0 = 1.0006 u,
proportional to the proton mass.

• Nuclide Mass spectrum: M2
0(∆) = ∆κ20 (∆− p) .

Figure 6: Holographic potential for
potassium nuclide, ∆ = 36, p = 3.

Figure 7: Holographic Potential for
Nitrogen nuclide, ∆ = 14, p = 1.

15

https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005


Light Nuclide mass spectrum (Experimental Data Huang 2021)

Experimental nuclide data SW-like Model
Z Nuclear Spin MExp

0 (u.) MTh
0 (u) Rel. Error (%)

2 0 4.00260 4.00260∗ 0.00
3 1 6.01511 5.480971 8.88
4 0 8.00530 8.005206 0.01
5 3 10.0129 8.372045 16.4
6 0 12.0000 12.00781 3.59
7 1 14.0030 13.49952 3.59
8 0 15.9949 16.01301 0.09
9 1 18.0009 16.01302 2.76
10 0 19.9949 17.50424 0.10
11 3 21.9944 20.01301 6.98
12 0 23.9850 20.45835 0.13

RMS error fitting 29 nuclides with one parameter: 4.4%.
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Woods-Saxon Approach



Woods-Saxon-like dilaton

• Inspired by the so-called WS model, we look out for a dilaton
that reproduces a WS potential profile in the bulk:

VWS(ζ) =

A1 − A2
1+ exp

(
ζ−B
∆

)
∆

• With the potential, we reconstruct the dilaton using

VWS (ζ) =
15− 16∆+ 4∆2

4 ζ2 +
(3− 2p)
2 ζ Φ′ +

1
4 Φ′2 − Φ′′

2 .
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WS-like dilaton

Figure 8: WS dilaton reconstruction for selected nuclides. 19



Light Nuclide mass spectrum (Experimental Data Huang 2021)

Experimental nuclide data WS-like Model
Z Nuclear Spin MExp

0 (u.) MTh
0 (u) Rel. Error (%)

2 0 4.00260 4.00391 0.01
3 1 6.01511 6.10883 2.34
4 0 8.00530 8.16760 2.70
5 3 10.0129 10.2040 2.39
6 0 12.0000 12.2212 2.21
7 1 14.0030 14.2297 1.89
8 0 15.9949 16.2301 1.68
9 1 18.0009 18.2244 1.40
10 0 19.9949 20.2137 1.23
11 3 21.9944 22.1989 1.02
12 0 23.9850 24.1805 0.89

Parameters choice: A1 = A2 = 1.863u and B = 2.5u

RMS Error fitting 29 masses with three parameters: 1.2% 20

https://iopscience.iop.org/article/10.1088/1674-1137/abddb0


Which one is the best model?

Holographic 4020Ca excited states
Hardwall Softwall WS

n Mn (u) ∆Mn(u) n Mn (u) ∆Mn(u) n Mn (u) ∆Mn(u)
0 34.7183 0 0 40.02603 0 0 39.9523 0
1 38.8472 4.1289 1 41.0145 0.9884 1 40.0085 0.0562
2 42.4237 7.7054 2 41.9796 1.9536 2 40.0641 0.1117
3 45.7299 11.012 3 42.9231 2.8971 3 40.1187 0.1665
4 48.8703 14.152 4 43.8463 3.8203 4 40.1728 0.2206
5 51.8971 17.179 5 44.7505 4.7244 5 40.2262 0.2740
This table summarizes the 40

20Ca ground state (in bold font) with the first five excited
radial states for each holographic model considered.

Thus, at least from purely spectroscopic arguments, WS is the best
choice!
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Configurational entropy



Configurational entropy

• For continuous variables, it is defined as

SC [f] = −
∫
dd k f̃ (k) log f̃ (k),

where f̃ (k) = f (k) /f (k)Max defines the modal fraction, f(k)Max is
the maximum value assumed by f(k).

• CE measures the relationship between the information content
and EQM of a given physical system.

• CE measures (logarithmically) how spatially-localized are these
EOM solutions.

• CE is increased when energy or particle number is increased.
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CE Algorithm

To compute the DCE for a given physical system, we must address the
following algorithm:

1. Obtain the localized solutions to the equations of motion.
2. Evaluate the on-shell energy density.
3. Transform to momentum space.
4. Calculate the modal fraction.
5. Evaluate the DCE integral expression.

23



CE for nuclides

• We will compute the differential CE (DCE) from the bulk
momentum-energy tensor:

Tmn =
2√
−g

∂ [
√
−gLNuclide]
∂ gmn ,

• From this quantity, we compute the energy density as

ρ(ζ) ≡ T00 =
e−Φ(ζ)

2

(
ζ2

R2

)p

×{[
1
g2p

(
M2
0 ψ

2 + ψ′2)− M2
5 R2
ζ2

ψ2
]}

Ω,

Where Ω is a constant carrying plane wave information and
polarization contraction factors.

Next, we will Fourier-transform the density ρ and compute DCE!
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Numerical Results for DCE

Figure 9: Differential Configurational Entropy (DCE) for holographic models
considered as a function of the atomic number Z.
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Conclusions



Remarks

• For each nuclide, we have a Holographic potential, defined by ∆
and the nuclear spin.

• Each holographic mass is the ground state mass from the
associated potential.

• By analyzing for each potential the splitting between the ground
state and the excited modes, we can conclude if the ground
state and excited modes are related as excited states of the
same nuclide or different particles (as in the hadronic Regge
Trajectories). For WS, this shifting is less than a proton mass.
Thus, the entire spectrum can be associated with a single
nuclide.

• WS and SW have a DCE growing with the nucleon content. Thus
heavier nuclides are expected to be more unstable than light
ones.

• Among the three models studied, the best choice to describe
nuclides is WS.
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The End
Thank you!
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