
刘庆军
北京石油化工学院, 102617

•Why to do we use the graphics processing unit
(GPU)

•How to build the GPU-accelerated package PCGv2

•What about the recent results of running the
package

•Conclusions and future work
2

Presented by Liu Qingjun, Beijing, March 03，2023

3

 Why graphics processing unit (GPU)

•GPUs ---- powerful arithmetic engine, very attractive

It is so powerful because

(1) GPU can do the job in parallel, following single instruction multi-
data (SIMD)

(2) It is designed to utilize more transistors for data processing
than CPU

Why graphics processing unit (GPU)

4

 Speedup simulation of heavy ion collisions is attractive, too

1. Huge amount of measured data by ALICE, STAR too.

2. Comparison with data demands even more of simulated data

3. The simulation is computing-intensive

4. Accelerating the simulation is challenging and thus full of fun!

5

•Our aim:
GPU-accelerated event generation in heavy-ion
collisions at the Large Hadron Collider(LHC)

•Methodology we apply:

APOD,
which NVIDIA advocates

• How to build PCGv2 to utilize
DCU

6

How to build PCGv2 to utilize
DCU

1.Program, e.g., in CUDA C (ANSI C/C++ with
extensions)

Other two way are, in your original code :

2. Call GPU-optimized libraries, such as cuFFT, cuBLAS
3. Add preprocessor directives, like those defined in Acc

• Three ways to get your apps targeting GPUs and
the like, DCU

 If from ground zero, follow the first way

which way(s) to use? It may be out of your assessment

7

•Assess

AMPT contains HIJING + ZPC + ART, serially
executed

ZPC is the most compute-intensive module among
them

 How to build PCGv2 to utilize
DCU

 In an unique way, ZPC does successive two-
parton

(4) During each round of collision detection,

8

• Parallelize using CUDA C （NVIDIA）or HIP （AMD）

(1) Use GPU-optimized libraries, or (2) preprocessor directives? NO

(3) Rewrite parton cascade, in CUDA C (Free)? YES

a. Update particle position and momentum info, or simulate two parton
collision on GPU or by calling a few FORTRAN subroutines of ZPC

b. Detect two-particle collision, by calling newly built CUDA C code or

HIP code
 It includes several kernels to facilitate parallel collision detection

 How to build PCGv2 to utilize
DCU

9

ART

HIJING

 How to build PCGv2 to utilize
DCU

Parton cascade
on

CPU or DCU
?

PCGv2 does what ZPC does: successive collision
detection and collision simulation, but involves DCU

Hadronization PCGv2

10

1. __global__ void firstCollisionTime() // compute and save
 colliding time for all of the 0.5N(N-1) pairs, get the index of
 the first colliding pair

2. Subroutines, advancing to the time and let the two collide

3. __global__ UpdateCollisionTime() // update colliding time
 for the pairs, each of which involve a parton that just
 committed a collision

4. __global__ void nextCollisionTime() // decide the next collision

5. If time for next collision > thresholdTime, PCG terminates;
Otherwise go to step 2 and repeat steps 3—5

 How to build PCGv2 to utilize
DCU

PCGv2 includes several kernels written in CUDA C or HIP,
and may use a few Fortran subroutines for simulating collisions

11

•Optimize

 According to "
",

(1) Select block size using cuda occupancy calculator

(2) Use shared memory for reduction

(3) Data re-use by saving colliding time for all colliding
pairs in global memory

 How to build PCG to utilize
GPU

12

•Deploy : Compile -> Run ->Check
 (1) hipcc –O2 –c pcgv2.cpp, for example
 a. Parton cascade simulated by pcgv2.cpp
 b. Compile the code with hipcc , provided free by AMD
(2) Using gfortran to link pcgv2.o with other object files of
AMPT: art.o, hijing.o, hipyset.o, main.o, zpc.o …

(3) Run executable to get timing information and
physics-related results (e.g., parton collision history)

(4) Check correctness by examining the collision history
and/or finale statevariable, look at performance of
PCGv2

 How to build PCGv2 to utilize DCU

13

1. Check for Correctness
Action item: comparing parton collision history with that from ZPC

• Before each two-parton collision, should be the same
• After each two-parton collision, should be the same

Findings: we got almost the same parton collision history in the two
cases, for collisions of Pb - Pb at TeV in central to
ward mid-central collisions.

Notes: collision time ordered in Lab and used the one from ZPC or
PCGv2

�푵푵 = 5.02

(rμ,pμ)

(rμ,pμ)

What about the recent results of PCG

Therefore, with DCU as a co-processor the parton cascade runs ok

14

What about the recent results of PCGv2

1. Check for Correctness
Action item: comparing rapidity distributions with those from ZPC
Findings: They are consistent nicely for central collisions of Pb - Pb

at TeV in central toward mid-central collisions.�푵푵 = 5.02

Therefore, with DCU as a co-processor PCGv2 runs ok

2. Check for speed-up

Definition: Speed-up (加速比）= time_ZPC/time_PCG
Collision centrality: central toward mid-central collisions
Collision type: Pb + Pb at

15

What about the recent results of PCGv1 and PCGv2

Number
of events

time_ZPC(s)
E5-2680V2 @ 2.80GHz

time_PCG(
s) Tesla K20m

Speed-up for 2.76
TeV with 0<b<3fm

 402 92977 23104 4x

Collision type: Pb + Pb at �푵푵 = 5.02 TeV , PCGv2

�푵푵 = 2.76 TeV , PCGv1

16

Conclusions and future work

--- ----------------------------------

• Conclusions
 We’ve updated a parton cascade code PCGv1 and arrived at
PCGv2. With a GPU-like accelerator called DCU as a co-processor,
parton cascade as simulated by PCGv2, complete much more
rapidly than as simulated by ZPC. PCGv2 mainly differs from ZPC
in algorithm for collision detection, and speedup reaches 14 for
central collisions of Pb - Pb at . Rapidity distributions
of final state charged particles agree in the two cases where ZPC
and PCGv2 are used for simulating parton cascade, respectively.
PCGv2 helps accelerate AMPT-based event generation once it is
integrated into AMPT.

• Future work
 Aiming at higher performance, and thorough test on A100.

17

cpu family : 6 model : 62
model name : Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz
cpu MHz : 1200.000 cache size : 25600 KB
MemTotal: 66006708 kB
For device #1 named Tesla K20m
clock rate is 705500
Device major and minor is 3.5
Total Global mem:5032706048
Total const mem:65536
#of Multiprocessor: 13
Shared mem per block: 49152 Registers per block: 65536
MaxThreadsPerBlock: 1024 concurrent kernels:1
MaxThreadsDim: (1024, 1024, 64)
MaxGridDim: (2147483647, 65535, 65535)
go ahead with streams here!
the device supports executing multiple kernels within the same
context simultaneously!

Why graphics processing unit (GPU)

19

