

Holographic QCD Model For $N_f = 4$ (2110.08215)

Hiwa A. Ahmed (何瓦)

School of Nuclear Science And Technology, UCAS

Weekly Group Meeting

April 27th, 2023

Outline

......

......

......

2

Introduction

- AdS/ CFT correspondence claims: Strongly coupled 4-dimensional gauge theory = Gravitational theory in 5-dimensional AdS space time.
- ➤ Gauge theory at zero temperature ⇔ AdS⁵ spacetime.
- ➤ Gauge theory at finite temperature ⇔ AdS₅ black hole.
- Top-down approach to AdS/QCD: start from a string theory in high dimensions and try to construct a low dimensional theory with features similar to QCD.
- Bottom-up approach to AdS/QCD: start from known QCD phenomenology and try to understand which feature its high dimension gravitational dual should have.

AdS/CFT dictionary

4D theory

Gauge invariant QCD operator O(x)

Hadrons with quantum numbers of *O* Hadron mass square

Conformal dimension Δ

UV regime IR regime

Decay constant < 0|0|hadron >

 $dS^{2} = e^{2A_{s}} (-dt^{2} + dz^{2} + dx^{i}dx_{i})$ $A_{s} = -\log(z), \quad \Phi = \mu^{2}z^{2}$ Field $\Psi(x, z)$ Normalizable modes $\Psi_n(x, z)$ Eigenvalue of a 5D wave eq. $5D \text{ mass } m_5$: $m_5^2 R^2 = (\Delta - p)(\Delta + p - 4)$ $\text{Small } z \to \varepsilon$ $\text{Large } z \to z_m$ $\frac{\Psi'(z)}{z^n} \Big|_{z\to 0}$

5D theory

Formalism

> The AdS/ CFT dictionary dictates: local symmetries in 5D ⇒ global symmetries in 4D. The chiral symmetry: $SU_L(N_f) \times SU_R(N_f)$ [hep-ph/0501128, hep-ph/0602229]. Let is consider the number of flavor N_f =4 [2007.02273, 1702.08417, 2110.08215].

$$S_{M} = -\int_{\epsilon}^{z_{m}} d^{5}x \sqrt{-g} \ e^{-\phi} \ \mathrm{Tr}\Big\{ (D^{M}X)^{\dagger}(D_{M}X) + m_{5}^{2}|X|^{2} \\ + \frac{1}{4g_{5}^{2}} \left(L^{MN}L_{MN} + R^{MN}R_{MN} \right) + (D^{M}H)^{\dagger}(D_{M}H) + m_{5}^{2}|H|^{2} \Big\},$$

 $D_M X = \partial_M X - iL_M X + iXR_M$ and $D_M H = \partial_M H - iV_M^{15} H - iHV_M^{15} \longrightarrow 2110.08215$

 $L_{MN} = \partial_M L_N - \partial_N L_M - i [L_M, L_N],$ $R_{MN} = \partial_M R_N - \partial_N R_M - i [R_M, R_N],$ the coupling constant $g_5^2 = 12\pi^2/N_c$

$$X = e^{i\pi^a t^a} X_0 e^{i\pi^b t^b},$$

 $X_0 = \operatorname{diag}[v_l(z), v_l(z), v_s(z), v_c(z)]$

4D: $\mathcal{O}(x)$	5D: $\phi(x, z)$	p	Δ	$(m_5)^2$
$ar{q}_L \gamma^\mu t^a q_L$	$A^a_{L\mu}$	1	3	0
$ar{q}_R \gamma^\mu t^a q_R$	$A^a_{R\mu}$	1	3	0
$\overline{q}^lpha_R q_L^eta$	$(2/z)X^{lphaeta}$	0	3	-3

 $L_M = V_M + A_M$ and $R_M = V_M - A_M$. $H = \text{diag}[0, 0, 0, h_c(z)]$

5

Formalism

To obtain the meson masses as well as the three and four point coupling constants, the action is expanded to quartic order [2110.08215], which is given as $c = c^{(0)} + c^{(2)} + c^{(3)} + c^{(4)}$

$$\begin{split} S &= S^{(5)} + S^{(5)} + S^{(5)} + S^{(5)}, \\ S^{(0)} &= -\int_{0}^{zm} d^{5}x \left\{ \frac{e^{-\phi(z)}}{z^{3}} \left(2v_{l}'(z)v_{l}'(z) + v_{s}'(z)v_{s}'(z) + v_{c}'(z)v_{c}'(z) \right) + \frac{e^{-\phi(z)}}{z^{5}}m_{s}^{2} \left(2v_{l}(z)^{2} + v_{s}(z)^{2} + v_{c}(z)^{2} \right) \right. \\ &+ \frac{e^{-\phi(z)}}{z^{3}} \left(h_{c}'(z)h_{c}'(z) \right) + \frac{e^{-\phi(z)}}{z^{5}}m_{s}^{2}h_{c}(z)^{2} \right\}, \\ S^{(2)} &= -\int_{0}^{zm} d^{5}x \left\{ \eta^{mn} \frac{e^{-\phi(z)}}{z^{3}} \left((\partial_{m}\pi^{a} - A_{m}^{a})(\partial_{n}\pi^{b} - A_{n}^{b})M_{A}^{ab} - V_{m}^{a}V_{n}^{b}M_{V}^{ab} + V_{m}^{15}V_{n}^{15}m_{V}^{15,15} \right) \\ &+ \frac{e^{-\phi(z)}}{4g_{5}^{2}z} \eta^{mp}\eta^{nq} \left(V_{mn}V_{pq} + A_{mn}A_{pq} \right) \right\}, \\ S^{(3)} &= -\int_{0}^{zm} d^{5}x \left\{ \eta^{mn} \frac{e^{-\phi(z)}}{z^{3}} \left(2(A_{m}^{a} - \partial_{m}\pi^{a})V_{n}^{b}\pi^{c}g^{abc} + V_{m}^{a}(\partial_{n}(\pi^{b}\pi^{c}) - 2A_{n}^{b}\pi^{c})h^{abc} \right) \\ &+ \frac{e^{-\phi(z)}}{2g_{5}^{2}z} \eta^{mp}\eta^{nq} (V_{mn}^{a}V_{p}^{b}V_{q}^{c} + V_{mn}^{a}A_{p}^{b}A_{q}^{c} + A_{mn}^{a}V_{p}^{b}A_{q}^{c} + A_{mn}^{a}A_{p}^{b}V_{q}^{c})f^{bca} \right\}, \\ S^{(4)} &= -\int_{0}^{zm} d^{5}x \left\{ \eta^{mn} \frac{e^{-\phi(z)}}{z^{3}} \left([\partial_{m}\pi^{a} - A_{m}^{a}][A_{n}^{b}\pi^{c}\pi^{d} - \frac{1}{3}\partial_{n}(\pi^{b}\pi^{c}\pi^{d})]l^{abcd} + V_{m}^{a}V_{n}^{b}\pi^{c}\pi^{d}(h^{abcd} - g^{acbd}) \right. \\ &+ \left[\frac{1}{2}\partial_{m}(\pi^{a}\pi^{b}) - A_{m}^{a}\pi^{b} \right] \left[\frac{1}{2}\partial_{n}(\pi^{c}\pi^{d}) - A_{n}^{c}\pi^{d} \right] h^{abcd} \right\} + \frac{e^{-\phi(z)}}{4g_{5}^{2}z} \eta^{mp}\eta^{nq}(V_{m}^{a}V_{n}^{b}V_{p}^{c}V_{q}^{d} + A_{m}^{a}A_{n}^{b}V_{p}^{c}V_{q}^{d} + 2A_{m}^{a}V_{n}^{b}V_{p}^{c}A_{q}^{d}) f^{abcd} \right\}.$$

Scalar Fields

The EOMs for the scalar vacuum expectation value $v_{l,s,c}(z)$:

$$-\frac{z^{3}}{e^{-\phi(z)}}\partial_{z}\frac{e^{-\phi}}{z^{3}}\partial_{z}v_{q}(z) + \frac{m_{5}^{2}}{z^{2}}v_{q}(z) = 0$$

With the analytical solutions: $v_q(z) = C_1(q) \ z \ \sqrt{\pi} \ U(\frac{1}{2}, 0, \phi) - C_2(q) \ z \ L(-\frac{1}{2}, -1, \phi)$

Expanding $v_q(z)$ at the UV boundary:

$$v_q(z)|_{z\to 0} = 2 C_1(q) z + \left(C_2(q) \mu^2 + C_1(q) \left[-\mu^2 + 2\gamma_E \mu^2 + 2\mu^2 \text{Log } z + 2\mu^2 \text{Log } \mu + \mu^2 \Psi(\frac{3}{2}) \right] \right) z^3$$
$$v_{l,s,c}(z) \to M_{l,s,c} z + \Sigma_{l,s,c} z^3$$

The auxiliary field $h_c(z)$ has similar solution,

$$h_c(z) = D_1 \ z \ \sqrt{\pi} \ U(\frac{1}{2}, 0, \phi) - D_2 \ z \ L(-\frac{1}{2}, -1, \phi)$$

 $h_c(z) \to m_c z$

Vector Fields

The EOMs for the transverse component of the vector fields:

$$\left(-\frac{z}{e^{-\phi}}\partial_z \frac{e^{-\phi}}{z}\partial_z + \frac{2g_5^2(m_V^{ab} - M_V^{ab})}{z^2}\right)V_{\mu\perp}^a(q,z) = -q^2 V_{\mu\perp}^a(q,z),$$

Gauge fixing: $V^{z,a} = 0$, and $\partial_{\mu} V_{\perp}^{\mu,a} = 0$ Boundary Conditions: $V_{\mu\perp}^{(n)a}(z)|_{q,z\to 0} = 0$ and $\partial_{z} V_{\mu\perp}^{(n)a}(z)|_{z\to z_{m}} = 0$. Decay Constant:

$$\int_{x} e^{iqx} \langle J_{V,\mu}^{a}(x) J_{V,\mu}^{b}(0) \rangle = \delta^{ab}(q_{\mu}q_{\nu} - q^{2}g_{\mu\nu})\Pi_{V}(q^{2}),$$

$$\Pi_{V}(q^{2}) = -\frac{e^{-\phi(z)}}{g_{5}^{2}q^{2}} \frac{\partial_{z}V(q,z)}{z}|_{z=\epsilon \to 0}, \quad V(z') = \frac{e^{-\phi(z)}}{z} \sum_{n} \frac{\psi'_{V^{n}}(\epsilon)\psi_{V^{n}}(z')}{q^{2} - m_{n}^{2}},$$

$$\Pi_{V}(q^{2}) = -\frac{1}{g_{5}^{2}q^{2}} \sum_{n} \frac{[e^{A(\epsilon) - \phi(\epsilon)}\psi'_{V^{n}}(\epsilon)]^{2}}{q^{2} - m_{n}^{2}}.$$

Considering the definition of the decay constant: $\langle 0|J_V^{\mu}|V(p)\rangle = i F_V p^{\mu}$

$$F_{V^n}^2 = \frac{\left[e^{A(\epsilon) - \phi(\epsilon)}\psi'_{V^n}(\epsilon)\right]^2}{g_5^2}|_{\epsilon \to 0}.$$

Pseudoscalar Fields

The longitudinal part of the axial vector fields and the pseudoscalar fields have mixing, and their EOMs can be written as:

$$\begin{aligned} q^2 \partial_z \varphi^a(q,z) &+ \frac{2g_5^2 M_A^{ab}}{z^2} \partial_z \pi^a(q,z) = 0 \,, \\ \text{Method I:} & \frac{z}{e^{-\phi}} \partial_z \left(\frac{e^{-\phi}}{z} \partial_z \varphi^a(q,z) \right) - \frac{2g_5^2 M_A^{ab}}{z^2} \left(\varphi^a(q,z) - \pi^a(q,z) \right) = 0 \,, \\ \text{With boundary condition} \ \pi^{(n)a}(q,z)|_{z\to 0} &= \varphi^{(n)a}(q,z)|_{z\to 0} = 0 \text{ and } \partial_z \varphi^{(n)a}(q,z)|_{z\to z_m} = 0 \end{aligned}$$

There are different combination of the φ and π fields to solve the EOMs,

Method II:
$$y(q^{2}, z) = \frac{e^{-\phi}}{z} \partial_{z} \Phi, \Rightarrow -\frac{e^{-\phi}}{z} \partial_{z} \frac{z}{\beta(z)e^{-\phi}} \partial_{z} y(q^{2}, z) + \beta(z)y(q^{2}, z) = -q^{2}y(q^{2}, z), \quad \beta(z) = \frac{2g_{5}^{2}M_{A}^{ab}}{z^{2}}$$
Method III:
$$\overset{\sim}{\pi} = \partial_{z}\pi, \Rightarrow -\partial_{z}\frac{z^{3}}{e^{-\phi}} \partial_{z}(\frac{e^{-\phi}}{z^{3}}\pi) + \beta(z)\overset{\sim}{\pi} = -q^{2}\overset{\sim}{\pi}, \quad \beta(z) = \frac{2g_{5}^{2}M_{A}^{ab}}{z^{2}}$$

Since $\Pi_A(q^2) \rightarrow -f_\pi^2 q^2$ with $q^2 \rightarrow 0$, the decay constant of the pseudoscalar meson is

$$f_{\pi}^{2} = -\frac{e^{A(\epsilon) - \phi(\epsilon)}\partial_{z}A(0,\epsilon)}{g_{5}^{2}}|_{\epsilon \to 0}$$

Free parameters

There are several free parameters in the model which can be fixed by the masses of different mesons.

→
$$\mu = 0.44 \text{ GeV}$$
 : Use the Regge slope: $m_{\rho}^2 = 4\mu^2 n$

$$\succ C_1(l) = 0.069 \ GeV: -\frac{z}{e^{-\phi}} \partial_z (\frac{e^{-\phi}}{z} \partial_z A^{(n)a}(q,z) + \frac{2g_5^2(2\nu_l^2(z))}{z^2} A^{(n)a}(q,z) = m_{a_1}^{(n)2} A^{(n)a}(q,z) \text{ for } n = 1, a = 3 \text{ and } m_{a_1} = 1.230 \text{ GeV}.$$

$$\succ C_1(s) = 0.090 \ GeV: -\frac{z}{e^{-\phi}} \partial_z (\frac{e^{-\phi}}{z} \partial_z V^{(n)a}(q,z) + \frac{2g_5^2 (-\frac{1}{2}(\nu_1(z) - \nu_s(z))^2}{z^2} V^{(n)a}(q,z) = m_{K^*}^{(n)2} V^{(n)a}(q,z) \text{ for } n = 1, a = 4 \text{ and } m_{K^*} = 0.892 \text{ GeV.}$$

$$\succ C_1(c) = 0.614 \ GeV: \left(-\frac{z}{e^{-\phi}}\partial_z \frac{e^{-\phi}}{z}\partial_z + \frac{2g_5^2 \frac{1}{6}(2\nu_l^2(z) + \nu_s(z)^2 + 9\nu_c(z)^2)}{z^2}\right)A^{(n)a}(q, z) = m_{\chi_{c1}}^{(n)a}A^{(n)a}(q, z) \text{ for } n = 1, a = 15 \text{ and } m_{\chi_{c1}} = 3.511 \text{ GeV}.$$

$$\succ D_1(c) = 0.509 \ GeV: \left(-\frac{z}{e^{-\phi}}\partial_z \frac{e^{-\phi}}{z}\partial_z + \frac{2g_5^2(\frac{3}{2}h_c^2(z))}{z^2}\right)V^{(n)a}(q,z) = m_{J/\Psi}^{(n)a}(q,z) \text{ for } n = 1, a = 15 \text{ and } m_{J/\Psi} = 3.097 \text{ GeV}.$$

 \succ M_l = 138 MeV, M_s = 180 MeV, M_c = 1228 MeV, m_c = 1018 MeV.

 \succ Σ_l = (137 MeV)³, Σ_s = (149 MeV)³, Σ_l = (283 MeV)³, σ_c = (262 MeV)³

Vector Meson Spectra

n

n	ρ (N	/leV)	K*(I	MeV)	ω(Ν	/leV)	D*(N	MeV)	D *(P	ИeV)	J/ψ(MeV)
	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model
1	775	880	892	892	782	880	2007	2341	2112	2293	3097	3100
2	1465	1245	1414	1251	1410	1245	2627	2551		2500	3686	3394
3	1570	1525	1718	1529	1670	1525	2781	2789	2714	2733	3773	3692
4	1720	1764			1960	1764	20				4040	4289
5	1900	1993			2205	1993	15	-		▼ ▽		-
6	2150	2233			2290	2233	GeV ²) 01 Ge		⊽ ¥ ▼			-
7					2330	2490) ₂ W 5	1	÷ *	ê (
							0)	2	4	6] 8

Axial Vector Meson Spectra

n	a ₁ (I	MeV)	<i>f</i> ₁ (MeV)	K ₁ (I	MeV)	D ₁ (MeV)	D _{s1} (MeV)	Xc1(MeV)
	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model
1	1230	1232	1282	1335	1253	1306	2422	2649	2460	2695	3511	3493
2	1411	1487	1426	1573	1403	1548					3872	3828
3	1655	1710	1518	1784	1672	1763					4147	4153
4	1930	1919	1971	1987							4274	4472
5	2096	2135	2310	2201		20						
						15-						-

6 2270 2368

n

Pseudoscalar Meson Spectra

中国科学院大学 University of Chinese Academy of Sciences

n	π(N	/leV)	<i>K</i> ⁰ (MeV)	η(N	leV)	D ⁰ (I	MeV)	D_s^{\pm} (MeV)	η_c (N	/leV)	
	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	Exp.	Model	
1	135	337	498	388	548	408	1865	1658	1968	1709	2984	2586	
2	1300	1461	1482	1533	1294	1560	2549	2811			3637	3668	
3	1810	1671	1629	1737	1475	1762							
4	2070	1861	1874	1923	1751	1947	15		• • • • • •				
5	2360	2048			2010	2130	√ 10						-
							(Ge/	▽	*				-
							¥ 5-					0	-
							-	Ŷ			A	•	-
							0	<u>M</u> 1	2	3	4	5	6
										n			

Different Methods To Obtain The Pseudoscalar Eigenvalues

π (MeV)

n	Exp.	Method I	Method II	Method III
1	135	337	345	-
2	1300	1461	1433	1513
3	1810	1671	1637	1728
4	2070	1861	1941	1923
5	2360	2048	2010	2112

Decay Constants

Comparison between the predicted ratios of the decay constants with experiment and lattice QCD.

Observable	Exp./LQCD	Model
f_K/f_π	1.196	1.150
f_{D_s}/f_D	1.180	1.030
f_{η_c}/f_{D_s}	1.576	1.448
$f_{K^*}^{1/2} / f_{ ho}^{1/2}$	1.005	0.990
$f_{D_s^*}^{1/2} / f_{D^*}^{1/2}$	0.954	1.595
$f_{K_1}^{1/2} / f_{a_1}^{1/2}$	1.085	0.799
$f_{D_{s1}}^{1/2} / f_{D_1}^{1/2}$	-	0.386

Coupling Constants

The three-point interaction of mesons can be obtained by the cubic order terms of 5D action.

$$\begin{split} S_{VVV} &= -\int_{0}^{z_{m}} d^{5}x \frac{e^{-\phi(z)}}{2g_{5}^{2}z} f^{bca} V^{\mu\nu,a} V^{b}_{\mu} V^{c}_{\nu}; \\ S_{VAA} &= -\int_{0}^{z_{m}} d^{5}x \frac{e^{-\phi(z)}}{2g_{5}^{2}z} f^{bca} \left(V^{\mu\nu,a} A^{b}_{\mu} A^{c}_{\nu} + 2A^{\mu\nu,a} V^{b}_{\mu} A^{c}_{\nu} \right), \\ S_{VA\pi} &= -\int_{0}^{z_{m}} d^{5}x \{ \frac{e^{-\phi(z)}}{z^{3}} 2V^{\mu,a} A^{b}_{\mu} \pi^{c} \left(g^{bac} - h^{abc} \right) + \frac{e^{-\phi(z)}}{2g_{5}^{2}z} f^{bca} \left(V^{\mu\nu,a} A^{b}_{\mu} A^{c}_{\nu} + 2A^{\mu\nu,a} V^{b}_{\mu} A^{c}_{\nu} \right) \}, \\ S_{V\pi\pi} &= -\int_{0}^{z_{m}} d^{5}x \{ \frac{e^{-\phi(z)}}{z^{3}} \left(2h^{abc} V^{\mu,a} (\pi^{b}\partial_{\mu}\pi^{c} - A^{b}_{\mu}\pi^{c}) - 2g^{abc} (A^{\mu,a} - \partial^{\mu}\pi^{a}) V^{b}_{\mu}\pi^{c} \right) \right) \\ &+ \frac{e^{-\phi(z)}}{2g_{5}^{2}z} f^{bca} \left(V^{\mu\nu,a} A^{b}_{\mu} A^{c}_{\nu} + A^{\mu\nu,a} V^{b}_{\mu} A^{c}_{\nu} + V^{\mu\nu,a} A^{b}_{\mu} V^{c}_{\nu} \right) \}, \\ g_{VVV} &= \int_{0}^{z_{m}} dz \frac{e^{-\phi(z)}}{2g_{5}^{2}z} f^{bca} \psi^{a}_{V(n)} \psi^{b}_{V(m)} \psi^{c}_{V(k)}, \\ g_{VAA} &= \int_{0}^{z_{m}} dz \frac{e^{-\phi(z)}}{2g_{5}^{2}z} f^{bca} \psi^{a}_{V(n)} \psi^{b}_{A(m)} \psi^{c}_{A(k)}, \end{split}$$

$$g_{VA\pi} = \int_{0}^{z_m} dz \frac{e^{-\phi(z)}}{z^3} 2\psi_{V^{(m)}}^a \psi_{A^{(m)}}^b \psi_{\pi^{(k)}}^c \left(g^{bac} - h^{abc}\right),$$

$$g_{V\pi\pi} = \int_{0}^{z_m} dz \frac{e^{-\phi(z)}}{z^3} \left\{\frac{e^{-\phi(z)}}{z^3} \left(2h^{abc}\psi_{V^{(n)}}^a \left(\psi_{\pi^{(m)}}^b \psi_{\pi^{(k)}}^c - \psi_{\Phi^{(m)}}^b \psi_{\pi^{(k)}}^c\right) + 2g^{abc} \left(\psi_{\Phi^{(n)}}^a - \psi_{\pi^{(n)}}^a\right) \psi_{V^{(m)}}^b \psi_{\pi^{(k)}}^c\right)\right\},$$

$$+ \frac{m_n^2 e^{-\phi(z)}}{2g_5^2 z} f^{bca} \left(\psi_{V^{(n)}}^a \psi_{\Phi^{(m)}}^b \psi_{\Phi^{(k)}}^c\right)\right\}.$$

Four-Point Interaction

$$\begin{split} S_{VVVV} &= -\int_{0}^{z_{m}} d^{5}x \frac{e^{-\phi(z)}}{4g_{5}^{2}z} f^{abcd} V^{\mu,a} V^{\nu,b} V^{c}_{\mu} V^{d}_{\nu}, \\ S_{VVAA} &= -\int_{0}^{z_{m}} d^{5}x \frac{e^{-\phi(z)}}{4g_{5}^{2}z} \{2V^{\mu,a} V^{\nu,b} A^{c}_{\mu} A^{d}_{\nu} \left(f^{abcd} + f^{cbad}\right) + 2V^{\mu,a} V^{b}_{\mu} A^{\nu,c} A^{d}_{\nu} f^{acbd}\}, \\ S_{AAAA} &= -\int_{0}^{z_{m}} d^{5}x \frac{e^{-\phi(z)}}{4g_{5}^{2}z} f^{abcd} A^{\mu,a} A^{\nu,b} A^{c}_{\mu} A^{d}_{\nu}, \\ S_{AA\pi\pi} &= -\int_{0}^{z_{m}} d^{5}x \{\frac{e^{-\phi(z)}}{2^{3}} A^{\mu,a} A^{b}_{\mu} \pi^{c} \pi^{d} (k^{acbd} - l^{abcd}) + \frac{e^{-\phi(z)}}{4g_{5}^{2}z} f^{abcd} A^{\mu,a} A^{\nu,b} A^{c}_{\mu} A^{d}_{\nu}\}, \\ S_{VV\pi\pi} &= -\int_{0}^{z_{m}} d^{5}x \{\frac{e^{-\phi(z)}}{z^{3}} V^{\mu,a} V^{b}_{\nu} \pi^{c} \pi^{d} (h^{abcd} - g^{acbd}) \\ &+ \frac{e^{-\phi(z)}}{4g_{5}^{2}z} \{2V^{\mu,a} V^{\nu,b} A^{c}_{\mu} A^{d}_{\nu} \left(f^{abcd} + f^{cbad}\right) + 2V^{\mu,a} V^{b}_{\mu} A^{\nu,c} A^{d}_{\mu} f^{acbd}\}, \\ S_{A\pi\pi\pi} &= -\int_{0}^{z_{m}} d^{5}x \{\frac{e^{-\phi(z)}}{z^{3}} l^{bacd} (\partial^{\mu} \pi^{a} A^{b}_{\mu} \pi^{c} \pi^{d} + A^{\mu,a} \partial_{\mu} \pi^{b} \pi^{c} \pi^{d} - A^{\mu,a} A^{b}_{\mu} \pi^{c} \pi^{d}) \\ &- (\frac{e^{-\phi(z)}}{z^{3}}) k^{abcd} (A^{\mu,a} \pi^{b} A^{c}_{\mu} \pi^{d} - \partial^{\mu} \pi^{a} \pi^{b} A^{c}_{\mu} \pi^{d} - A^{\mu,a} \pi^{b} \partial_{\mu} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} l^{bacd} (\partial^{\mu} \pi^{a} A^{b}_{\mu} \pi^{c} \pi^{d} + A^{\mu,a} \partial_{\mu} \pi^{b} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} l^{bacd} (\partial^{\mu} \pi^{a} A^{b}_{\mu} \pi^{c} \pi^{d} + A^{\mu,a} \partial_{\mu} \pi^{b} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} k^{abcd} (A^{\mu,a} \pi^{b} A^{c}_{\mu} \pi^{d} - \partial^{\mu} \pi^{a} \pi^{b} A^{c}_{\mu} \pi^{d} - A^{\mu,a} \pi^{b} \partial_{\mu} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} l^{bacd} (\partial^{\mu} \pi^{a} A^{b}_{\mu} \pi^{c} \pi^{d} + A^{\mu,a} \partial_{\mu} \pi^{b} \pi^{c} \pi^{d} - A^{\mu,a} \pi^{b} \partial_{\mu} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} l^{bacd} (A^{\mu,a} \pi^{b} A^{c}_{\mu} \pi^{d} - \partial^{\mu} \pi^{a} \pi^{b} A^{c}_{\mu} \pi^{d} - A^{\mu,a} \pi^{b} \partial_{\mu} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} f^{abcd} A^{\mu,a} A^{\nu,b} A^{c}_{\mu} A^{\mu}_{\mu} \partial_{\mu} \pi^{b} \pi^{c} \pi^{d} - A^{\mu,a} \pi^{b} \partial_{\mu} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} f^{abcd} A^{\mu,a} A^{\mu,b} A^{c}_{\mu} A^{\mu}_{\mu} \partial_{\mu} \pi^{b} \pi^{c} \pi^{d} - A^{\mu,a} \pi^{b} \partial_{\mu} \pi^{c} \pi^{d}) \\ &+ \frac{e^{-\phi(z)}}{z^{3}} f^{abcd} A^$$

Coupling Constants

$$\begin{split} g_{VVVV} &= \int_{0}^{2m} dz \frac{e^{-\phi(z)}}{4g_{5}^{2}z} f^{abcd} \psi_{V(n)}^{a} \psi_{V(m)}^{b} \psi_{V(k)}^{c} \psi_{V(j)}^{d}, \\ g_{VVAA} &= \int_{0}^{2m} dz \frac{e^{-\phi(z)}}{4g_{5}^{2}z} 2\psi_{V(n)}^{a} \psi_{V(m)}^{b} \psi_{A}^{c}_{A}(k) \psi_{A}^{d}_{A}(j) \left(f^{abcd} + f^{cbad} + f^{acbd}\right), \\ g_{AAAA} &= \int_{0}^{2m} dz \frac{e^{-\phi(z)}}{4g_{5}^{2}z} f^{abcd} \psi_{A}^{a}_{A}(n) \psi_{A}^{b}_{A}(m) \psi_{A}^{c}_{A}(k) \psi_{A}^{d}_{A}(j), \\ g_{VV\pi\pi} &= \int_{0}^{2m} dz \Big\{ \frac{e^{-\phi(z)}}{2g_{5}^{2}z} \psi_{V(n)}^{a} \psi_{V}^{b}_{V(m)} \psi_{\pi}^{c}_{K}(k) \psi_{d}^{d}_{A}(j) \left(f^{abcd} - g^{acbd}\right) \\ &\quad + \frac{m_{n}^{2} e^{-\phi(z)}}{2g_{5}^{2}z} \psi_{V}^{a}_{A}(n) \psi_{V}^{b}_{V}(m) \psi_{\Phi}^{c}_{\Phi}(k) \psi_{\Phi}^{d}(j) \left(f^{abcd} + f^{cbad} + f^{acbd}\right) \Big\}, \\ g_{AA\pi\pi} &= \int_{0}^{2m} dz \Big\{ \frac{e^{-\phi(z)}}{z^{3}} \psi_{A}^{a}(n) \psi_{A}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\Phi}^{d}(j) \left(f^{abcd} - l^{abcd}\right) \\ &\quad + \frac{m_{n}^{2} e^{-\phi(z)}}{2g_{5}^{2}z} \psi_{A}^{a}(n) \psi_{A}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\Phi}^{d}(j) \left(f^{abcd} + f^{cbad} + f^{acbd}\right) \Big\}, \\ g_{A\pi\pi\pi} &= \int_{0}^{2m} dz \Big\{ \frac{e^{-\phi(z)}}{z^{3}} (\psi_{A}^{a}(n) \psi_{\Phi}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\pi}^{d}(j) \left(f^{abcd} + f^{acbd}\right) \Big\}, \\ g_{\pi\pi\pi\pi} &= \int_{0}^{2m} dz \Big\{ \frac{e^{-\phi(z)}}{z^{3}} (\psi_{A}^{a}(n) \psi_{\Phi}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\pi}^{d}(j) \left(f^{cbad} + f^{acbd}\right) \Big\}, \\ g_{\pi\pi\pi\pi} &= \int_{0}^{2m} dz \Big\{ \frac{e^{-\phi(z)}}{z^{3}} (\psi_{A}^{a}(n) \psi_{\Phi}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\Phi}^{d}(j) \left(f^{cbad} + f^{acbd}\right) \Big\}, \\ g_{\pi\pi\pi\pi} &= \int_{0}^{2m} dz \Big\{ \frac{e^{-\phi(z)}}{z^{3}} [\psi_{A}^{a}(n) \psi_{\Phi}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\Phi}^{d}(j) \left(f^{cbad} + f^{acbd}\right) + \psi_{\pi}^{a}(n) \psi_{\Phi}^{b}(m) \psi_{\pi}^{c}(k) \psi_{\pi}^{d}(j) \left(l^{abcd} - k^{acbd} - k^{acbd$$

Coupling Constants

Observable	Model	2110.08215
$g_{K^*D^*D_S^*}/g_{ ho D^*D^*}$	1.025	1.038
$g_{K^*D D_s}/g_{\rho D D}$	1.047	0.203
$g_{K_1D_sD^*}/g_{a_1DD^*}$	1.520	0.433
$g_{\psi D_s^* D K}/g_{\psi D^* D \pi}$	1.060	0.435

- ✓ Apply the approach to the hard-wall model and include the scalar field in the action.
- \checkmark Extend the approach to the Baryonic sector and study the heavy baryons.
- ✓ Adding the U(1) $_A$ axial anomaly to the action and investigate the effect on the heavy mesons (with Mamiya).

谢谢! THANKS!

二O二三年 O四月二七日