

Observation of structure in the J/ ψ J/ ψ mass spectrum at CMS

Xining WANG (Tsinghua University & Nanjing Normal University & Sun Yat-Sen University)

The 8th XYZ Particle Symposium 26 July 2023, Jilin, China

Xining Wang @ THU

• History

- About exotic hadron
- New Domain of Exotics: All-Heavy Tetra-quarks

• CMS J/ ψ J/ ψ study <u>arXiv:2306.07164</u>

- Data sample and event selections
- Steps to identify structures
- Result and systematics
- Interpretation through interference models

• Summary

Outlook

Possible penta-quark state •

Gell-mann noted the possibility of "exotic" hadrons in classic 1964 paper

X(3872) (Belle)--2003

 $M(\pi^+\pi^-J/\psi)$ (MeV/c²)

2017 Laureates

"...The X(3872) was discovered by Dr. Sookyung Choi and Dr. Stephen Olsen with their colleagues in the Belle experiment among the final states of the decay of B mesons. The X(3872) was confirmed by seven other experimental groups thereafter and is the first example of a new type of XYZ meson and the most well-established state among them. ..."

2017 Korean Ho-Am Science Prize

New Domain of Exotics: All-Heavy Tetra-quarks

- A different exotic system compared to exotics with light quarks
- First mention of 4c states at 6.2 GeV (1975): Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2 (Just one year after the discovery of J/ψ)
- First calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317

Data for R from SLAC-LBL collaboration. The curve is the QCD prediction for R.

New Domain of Exotics: All-Heavy Tetra-quarks

- A different exotic system compared to exotics with light quarks
- First mention of 4c states at 6.2 GeV (1975): Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2
 (Just one year after the discovery of J/ψ)
- First calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317

L	S	JPC		Mass (GeV)
1	0	1		6.55
	$\frac{1}{2}$	$0^{-+}, 1^{-+}, 2^{}$ $1^{}, 2^{}, 3^{}$	· + · –	
2	0	2++		6.78
	$\frac{1}{2}$	$1^{+-}, 2^{+-}, 3^{+}$	· - · + 2++ 4++	
	2	0, 1, 1, 2,	, 3 , 4 , 4	
3	0	$3^{}$	+	6.98
	2	$2^{-}, 3^{-}, 4^{-}, 2^{}, 3^{-}$	-, 4, 5	
$cc)_{\underline{e}}$	<u>,</u> – (<i>cc</i>)) ₆ *		<u></u>
L	S	JPC	Mass (Ge	 V)
1	0	1	6.82	
2	0	2++	7.15	
3	0	3	7.41	

Linked by color electric flux in a bag

Possible two-body decays

Xining Wang @ THU

First evidence of $J/\psi J/\psi$ events in 1982

There were other attempts

2++ four-quark states, PRD29 (1984) 426

TABLE I. Parameters used in Eq. (8) to calculate the cross sections for vector-meson pair production. (+) and (-) denote two degenerate $2^{++} Q^2 \overline{Q}^2$ states. Except in the case of JJ, we take $4\pi/f_I^2 = 0.03$, due to the fact that the $2^{++} Q^2 \overline{Q}^2$ are expected to lie not far above the threshold. α_s is determined from Eq. (11).

			M_{j}		
V_1V_2	$a\dot{V}_{1}V_{2}/a$	$b^{j}_{\alpha\beta} / \alpha_s \frac{a}{\sqrt{8}} \delta_{\alpha\beta}$	(GeV)	α_s	m_1
JJ	1/√3	$\left[\frac{2}{3}\right]^{1/2}\frac{4\pi}{f_{I}^{2}}$	7.0	0.18	3.10
$J\omega^{(+)}$	1/√6	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\perp}f_{\omega}}$	4.05	0.2	
$J\omega^{(-)}$	1/√12	$\left(\frac{2}{3}\right)^{1/2}\frac{4\pi}{f_{L}f_{\omega}}$	4.05	0.2	
$\Upsilon J^{(+)}$	1/√6	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\Sigma}f_{I}}$	13.5	0.167	-
$\Upsilon J^{(-)}$	1/12	$\left(\frac{2}{3}\right)^{1/2}\frac{4\pi}{f_{\rm X}f_{\rm Z}}$	13.5	0.167	
$B_c^* \overline{B}_c^{*(+)}$	$-1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\Sigma}f_{I}}$	13.5	0.167	6.60
$B_c^* \overline{B}_c^{*(-)}$	1/12	$\left[\frac{2}{3}\right]^{1/2}\frac{4\pi}{f_{\mathcal{X}}f_{\mathcal{I}}}$	13.5	0.167	

The CMS detector & trigger

Excellent detector for (exotic) quarkonium:

• Muon system

High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ

- Silicon Tracking detector, B=3.8T
 △p_T/p_T~1% & excellent vertex resolution
- Special triggers for different analysis at increasing Inst. Lumi. μ p_T, ($\mu\mu$) p_T, ($\mu\mu$) mass, ($\mu\mu$) vertex, and additional μ

CMS contributions to heavy exotic states

Observed X(3872) signal in PbPb

Nucl. Phys. Vol 1005 (2021)121781

- Di-J/ ψ cross section analysis was carried out in 2011
- CMS has large di-J/ ψ sample
- Any surprise in di-J/ ψ mass spectrum?

• History

- About exotic hadron
- New Domain of Exotics: All-Heavy Tetra-quarks

• CMS J/ ψ J/ ψ study <u>arXiv:2306.07164</u>

- Data sample and event selections
- Steps to identify structures
- Result and systematics
- Interpretation through interference models

Discussion and summary

135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs

- Main selections:
 - Fire corresponding trigger in each year & offline selection
 - Multiple candidates' treatment:

Select best combination of same 4 μ (~0.2%) with $\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$ Keep all candidates arising from > 4 μ (~0.2%)

Signal and background MC samples produced by Pythia8, JHUGen, HELAC-Onia...

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html (CMS-PAS-BPH-21-003)

Xining Wang @ THU

J/ψ signal

- Remove by J/ ψ mass related cuts
- Clean J/ ψ signal as seen

- ~15000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ) <15 GeV)
- ~9000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ) <9 GeV)

Steps to identify structures in $J/\psi J/\psi$ mass spectrum

□ Null-hypothesis (initial baseline model): NRSPS+NRDPS

- NRSPS—Non-Resonant Single Parton Scattering
- NRDPS—Non-Resonant Double Parton Scattering
- Feed-down from possible heavier mass states
 - $X \to J/\psi\psi(2S) \to J/\psi J/\psi + \cdots$
- Combinatorial backgrounds
 - *J*/ψμμ、μμμμ
 - Misidentified hadrons
 - Shapes well modeled by NRSPS +NRDPS

✤ NRDPS :

Xining Wang @ THU

Steps to identify structures in $J/\psi J/\psi$ mass spectrum

Null-hypothesis (initial baseline model): NRSPS+NRDPS

- NRSPS—Non-Resonant Single Parton Scattering
- NRDPS—Non-Resonant Double Parton Scattering

Add potential structures to baseline model Add the most prominent structure to baseline model Relativistic S-wave Breit-Wigner (BW) convolved with double-Gaussian resolution function for each structure Calculate its local significance Local significance: standard likelihood ratio method Keep it in baseline model only if > 3σ significance

Repeat until no more $> 3\sigma$ structures

CMS background (BW0 + NRSPS + NRDPS)

- 4 significant structures: BW0, BW1, BW2, BW3
- Most significant structure in first step is BWO at the threshold, what is its meaning?
- Treat BWO as part of background due to:
 - Inadequacy of our NRSPS model at threshold
 - BW0 parameters are very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - $X \to J/\psi\psi(2S) \to J/\psi J/\psi + \cdots$
- BW0+NRSPS+NRDPS as our background

Final CMS model: 3 BWs + Background (null)

- BW2[X(6900)] (9.4 σ) confirmation
- Observation of BW1 (6.5σ)
- Evidence for BW3 (4.1 σ)

	BW1	BW2	BW3
M [MeV]	6552^{+10}_{-10}	6927^{+9}_{-9}	7287^{+20}_{-18}
Γ [MeV]	124^{+32}_{-26}	122^{+24}_{-21}	95^{+59}_{-40}
Ν	470^{+120}_{-110}	492 ⁺⁷⁸ ₋₇₃	156^{+64}_{-51}

Statistical significance only Statistical significance based on: 2 ln(L₀/L_{max})

Xining Wang @ THU

- To include systematics, alternative resonance/background shapes applied in the fit:
- Calculate signal- and null-hypothesis *NLL_{syst}* including systematic using:
 - $NLL_{syst-sig} = Min\{NLL_{nom-sig}, NLL_{alt-i-sig} + 0.5 + 0.5 \cdot \Delta dof\}$
 - *NLL_{nom-sig}* means the NLL of nominal 'signal hypothesis' fit.
 - *NLL_{alt-i-sig}* means the NLL of i-th alternative fit of 'signal hypothesis'
 - Δdof means the additional free parameters comparing to the nominal 'signal hypothesis' fit
 - $NLL_{syst-null} = Min\{NLL_{nom-null}, NLL_{alt-j-null} + 0.5 + 0.5 \cdot \Delta dof\}$
 - Significance including systematics as usual from NLL_{syst-null} NLL_{syst-sig}

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

- Investigated effects of systematics on local significance
 - Change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
momentum scaling	1	3	4	-	-	-
mass resolution	< 1	< 1	< 1	< 1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
efficiency	< 1	< 1	< 1	1	< 1	1
feeddown shape	11	1	1	25	8	6

Table 2: Systematic uncertainties on masses and widths, in MeV.

CMS PAS BPH-21-003

CMS PAS BPH-21-003

$M[BW1] = 6552^{+10+12}_{-10-12} MeV$	Γ[BW1] = 124 ⁺³²⁺³³ ₋₂₆₋₃₃ MeV	>5.7 o
$M[BW2] = 6927^{+9+4}_{-9-4} MeV$	$\Gamma[BW2] = 122^{+24+18}_{-21-18} \text{ MeV}$	>9.4 o consistent
$M[BW3] = 7287^{+20+5}_{-18-5}MeV$	$\Gamma[BW3] = 95^{+59+19}_{-40-19} \text{ MeV}$	>4.1 o

X(6900) [LHCb] (somewhat different fit model) M[BW2]=6905±11±7 MeV Γ[BW2] =80±19±33 MeV

- > In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ X(6900) → poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" X(6700) to interfere with NRSPS background to account for dip
- What happens if fit CMS data using LHCb models?

Model I

Model II

Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)	$\overline{\mathbf{N}}$
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24	

X(6900) parameters are in good agreement with LHCb LHCb did not give parameters for another 2 BWs

- CMS Data shows a shoulder before BW1
- CMS shoulder makes BW1 distinct
- Does not describe well dips

Xining Wang @ THU

Fit with LHCb model II—DPS+X(6900)+"X(6700)" interferes with NRSPS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for X(6700)
 - Fast CMS threshold turn-on drives NRSPS high, which drives large aux. BW
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7300) region

The dips

- Possibility #1:
- Interference between structures?
- Why no interference for Y(nS) peaks?
 - Width too narrow to overlap
- Possibility #2:
- Multiple fine structures to reproduce the dips?
- Mentioned in PAS
- More secrets to dig out
- We explored possibility #1 in detail

- Explored fit with interference between various combinations of BWs
- Pdf for three BW interference

 $Pdf(m) = N_{X_0} \cdot |BW_0|^2 \bigotimes R(M_0)$ + $N_{X and interf} \cdot [r_1 \cdot e^{i\phi_1} \cdot BW_1 + BW_2 + r_3 \cdot e^{i\phi_3} \cdot BW_3|^2]$ Interf. term + $N_{NRSPS} \cdot f_{NRSPS}(m) + N_{NRDPS} \cdot f_{NRDPS}(m)$

- Many ways of interference due to possible J^{PC} and quantum coherence
 - 2-object-interference between BW0, BW1, BW2, BW3
 - 3-object-interference between BW0, BW1, BW2, BW3
 - 4-object-interference between BW0, BW1, BW2, BW3
- Our choice: interference between BW1, BW2, BW3
 - $\chi^2 prob < 30\%$ for 2-body
 - No significant better description for 4-body

CMS interference fit

- Fit with interf. between BW1, BW2 and BW3 describes data well
- χ^2 probability in [6.2, 7.8] GeV is 65% (vs. 9% in no-interf. fit)
- Measured mass and width in the interference fit

	M(BW1)	M(BW2)	M(BW3)	Г(BW1)	Г(BW2)	Г(BW3)
Interf. fit [MeV]	6638^{+43}_{-38}	6847^{+44}_{-28}	7134 ⁺⁴⁸ -25	440^{+230}_{-200}	191^{+66}_{-49}	97^{+40}_{-29}
Non-interf. fit [MeV]	6552^{+10}_{-10}	6927^{+9}_{-9}	7287^{+20}_{-18}	124^{+32}_{-26}	122^{+24}_{-21}	95^{+59}_{-40}

Summary of systematic uncertainties for interf. case

- Total systematic uncertainty is quadrature sum of each source
- Systematic uncertainties from feed-down contribution are asymmetric
- Systematic uncertainties from other sources are symmetric

Fit	Dominant sources	$M_{\rm BW_1}$	$M_{\rm BW_2}$	$M_{\rm BW_3}$	Γ_{BW_1}	$\Gamma_{\rm BW_2}$	$\Gamma_{\rm BW_3}$
Interference	Signal shape	7	12	7	56	8	7
	DPS shape	1	3	2	18	6	2
	NRSPS shape	9	14	13	85	9	20
	Mass resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	<1	5	3	2
	Feed-down	$\substack{+0\\-27}$	$+44 \\ -0$	$\begin{array}{c} +38 \\ -0 \end{array}$	$^{+0}_{-210}$	$^{+19}_{-0}$	$^{+12}_{-0}$
	Total uncertainty	$^{+16}_{-31}$	$+48 \\ -20$	$+41 \\ -15$	$^{+110}_{-240}$	$^{+25}_{-17}$	$^{+29}_{-26}$

- Lager systematic uncertainties:
 - Greater complexity & increased parameters correlation of the fit

Final result

Measured mass and width

		BW_1	BW_2	BW_3
No-interference	$m [{ m MeV}]$	$6552\pm10\pm12$	$6927 \pm 9 \pm 4$	$7287^{+20}_{-18} \pm 5$
	$\Gamma [{ m MeV}]$	$124^{+32}_{-26}\pm 33$	$122^{+24}_{-21} \pm 18$	$95^{+59}_{-40} \pm 19$
	N	470^{+120}_{-110}	492_{-73}^{+78}	156^{+64}_{-51}
Interference	$m \; [\text{MeV}]$	6638_{-38-31}^{+43+16}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
	$\Gamma \ [{ m MeV}]$	$440^{+230+110}_{-200-240}$	$191\substack{+66+25\\-49-17}$	97^{+40+29}_{-29-26}

Non-interference fit

Interference fit

Systematic uncertainty table (sources with minor effects suppressed)

Fit	Dominant sources	$M_{\rm BW_1}$	$M_{\rm BW_2}$	$M_{\rm BW_3}$	$\Gamma_{\rm BW_1}$	$\Gamma_{\rm BW_2}$	$\Gamma_{\rm BW_3}$
No-interfere	nce Signal shape	3	3	3	10	5	5
	NRSPS shape	3	1	1	18	15	17
Non-interference	e fit Feed-down	11	1	1	25	8	6
	Total uncertainty	12	4	5	33	18	19
Interference	Signal shape	7	12	7	56	8	7
	DPS shape	1	3	2	18	6	2
	NRSPS shape	9	14	13	85	9	20
Interference f	It Mass resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	<1	5	3	2
	-	+0	+44	+38	+0	+19	+12
	Feed-down	-27	-0	-0	-210	-0	-0
	Total uncertainty	$^{+16}_{-31}$	$^{+48}_{-20}$	$+41 \\ -15$	$^{+110}_{-240}$	$^{+25}_{-17}$	$^{+29}_{-26}$

• Implication of interf. Result:

- Same J^{PC}
- Large separation--200-300 MeV indicates radial excitation
- Any theoretical predication?

Xining Wang @ THU

Comparison with some theoretical calculations

N^{2S+2}	$^{1}L_{J} J^{P}$	$C \langle K.E$	E_{\cdot} $E^{(0)}$) $\langle V_C^{(0)} \rangle$	$\rangle \langle V_L^{(0)} \rangle$	$\langle V_{SS}^{(1)} \rangle$	$\langle V_{LS}^{(1)} \rangle$	$\langle V_T^{(1)} \rangle$	$V^{(1)}(r)$	M_{f}
$1^{3}P_{1}$	1^{-+}	356.6	320.3	-366.7	337.5	-7.2	-28.4	21.5	-2.7	6554
$2^{3}P_{1}$	1^{-+}	410.0	689.6	-263.4	548.6	-5.6	-23.1	17.2	-1.6	6926
$3^{3}P_{1}$	1^{-+}	475.1	982.6	-215.5	727.7	-4.6	-20.9	15.5	-1.2	7220
arXiv:	2108.0	4017 [hep-pł	ןו						

P-v	vave		
(1).	(1)		

$M[BW1] = 6552^{+10+12}_{-10-12} MeV$	
$M[BW2] = 6927^{+9+4}_{-9-4} MeV$	
$M[BW3] = 7287^{+20+5}_{-18-5} MeV$	

S-wave

<u>5 fb⁻¹ (13 TeV)</u>	$T_{4Q}(nS)$ states	J^p	Mass(n=1)	Mass(n=2)	Mass(n=3)	Mass(n=4))	$M[BW1] = 6638^{+43+16}_{-38-31} \text{ MeV}$
2	$T_{ccar{c}ar{c}}$	0++	$6055\substack{+69\\-74}$	$6555\substack{+36\\-37}$	6883^{+27}_{-27}	7154^{+22}_{-22}		$M[BW2] = 6847^{+44+48}_{-28-20} MeV$
erf.		2++	$6090\substack{+62\\-66}$	6566^{+34}_{-35}	$6890\substack{+27\\-26}$	7160^{+21}_{-22}		$M[BW3] = 7134^{+48+41}_{-25-15} MeV$

• Radial excited p-wave states (like J/ψ series)?

- Or Radial excited S-wave states?
- Theoretical situation difficulty & confusing
 - Important next step: measure J^{PC} to clarify
- Natural question: what about YY final state?

Nucl. Phys. B 966 (2021) 115393

Comparison with LHCb & ATLAS

- CMS vs LHCb comparisons:
 - 135/9 ≈ 15X (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

- CMS vs ATLAS comparisons:
 - ATLAS is 1/3 –1/2 of CMS data (trigger?)
 - ATLAS used dR cut—remove high mass events
 - CMS has slightly better resolution

CMS has good sensitivity to all-muon final state in this mass region

Summary

- CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data <u>arXiv:2306.07164</u>
 - BW2 consistent with X(6900) reported by LHCb
 - CMS found two new structures, provisionally named as X(6600), X(7300)
- A family of structures which are candidates for all-charm tetra-quarks!
 - Large mass separations 200+ MeV suggest radial excitation
 - Possible interference effects suggest the same J^{PC} and coherent production
 - All-heavy quark exotic structures offer a system easier to understand
 - Mass differences from multiple structures can be better calculated
 - A new window for further research in strong interaction

Outlook

- Data in 2016 + 2017 + 2018: 41.6 + 49.8 + 67.9 = 159.3 fb⁻¹
- Updated data in 2022 + 2023: 42.0 + 20.6 = 62.6 fb⁻¹
 - Confirmation of X(6600), X(6900) with updated data?
 - Observation of X(7300)
- Spin parity analysis is going on

Create an optimal observable (MELA) to separate spin parity

$$\mathcal{R}_{ ext{opt},2} = rac{\mathcal{P}_1(ec{x}_{ ext{reco}}^{ ext{full}})}{\mathcal{P}_0(ec{x}_{ ext{reco}}^{ ext{full}}) + c \cdot \mathcal{P}_1(ec{x}_{ ext{reco}}^{ ext{full}})}$$

Backup

Summary

CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data

- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
 - Large mass separations 200+ MeV suggest radial excitation
 - Possible interference effects suggest same $J^{PC}% = J^{PC}$ and coherent production
- All-heavy quark exotic structures offer system easier to understand
- Mass differences from multiple structures can be better calculated
- A new window to understand the strong interaction

CMS has good sensitivity to all-muon final states in this mass region

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

Final CMS model: 3 BWs + Backgrounds+ BW0

Signal PDF

 $BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im_0\Gamma(m)},$ $\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{m} \left(B'_L(q, q_0, d)\right)^2,$ Phase space $B'_L(q, q_0, d) = \frac{q^{-L}B_L(q, d)}{q_0^{-L}B_L(q_0, d)} = \left(\frac{q_0}{q}\right)^L \frac{B_L(q, d)}{B_L(q_0, d)},$ $B_0(q,d) = 1,$ $B_1(q,d) = \sqrt{\frac{2z}{z+1}},$ $B_2(q,d) = \sqrt{\frac{13z^2}{(z-3)^2 + 9z}},$ $B_3(q,d) = \sqrt{\frac{277z^3}{z(z-15)^2 + 9(2z-5)^2}},$
$$\begin{split} B_4(q,d) &= \sqrt{\frac{12746z^4}{(z^2-45z+105)^2+25z(2z-21)^2}},\\ z &= (|q|d)^2, z_0 = (|q_0|d)^2 \end{split}$$

• Default : L=0

 $\sum N_{X_j} \cdot |BW(m, M_j, \Gamma_j)|^2 \otimes R(M_j)$

Background PDF

$$\begin{split} f_{SPS}(x, x_0, \alpha, p_1, p_2, p_3) \\ &= (x - x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right) \cdot (15 - x)^2\right) \cdot \exp(-\frac{(x - x_0)^{p_3}}{2 \cdot p_2^{p_3}} \\ x_t &= x - x_0, \ x_0 &= 2M_{J/\psi}, \end{split}$$

$$\begin{split} f_{DPS}(x) &= \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot (p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2), \\ x_t &= x - x_0, \ x_0 &= 2M_{J/\psi}. \end{split}$$

3 float parameters: p2 from NRSPS N(NRSPS), N(NRDPS)

Blinded mass windows for Run II $J/\psi J/\psi$ at CMS

We saw hints of structue at Run I data Proposed three signal regions for Run II data

Blinded mass windows for Run II $J/\psi J/\psi$:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result