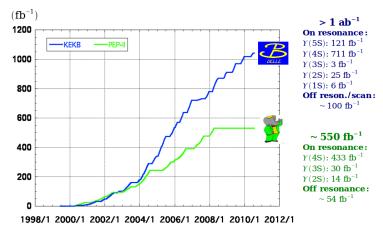
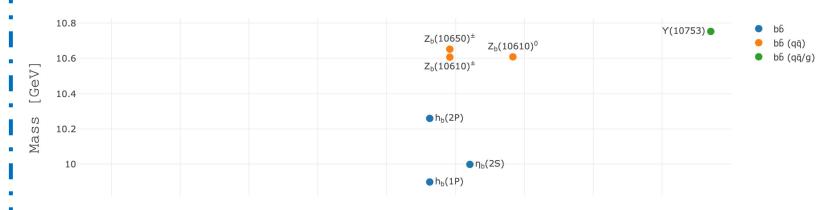
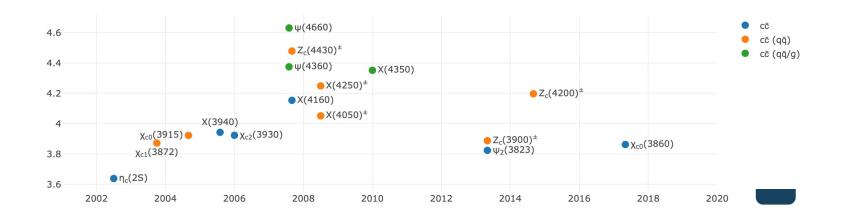

Quarkonium(-like) states at Belle and Belle II

贾森 (东南大学) on behalf of the Belle and Belle II Collaboration

> 第八届XYZ粒子研讨会 2023年7月25-30日,长春

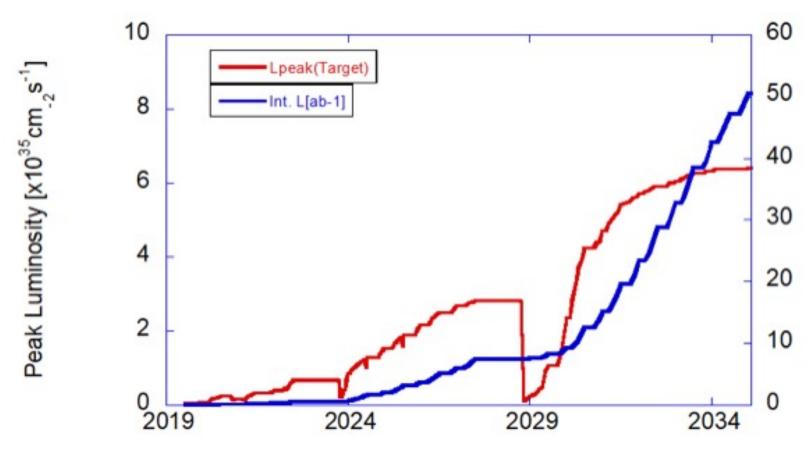

From KEKB to SuperKEKB


Datasets and new quarkonia at Belle


Integrated luminosity of B factories

Data taking: 1999 – 2010 On/off/Scan $\Upsilon(nS)$ peaks 772M $B\overline{B}$ events $@\Upsilon(4S)$

From QWG website:



Datasets at Belle II

In June 2022

WORLD RECORD: $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

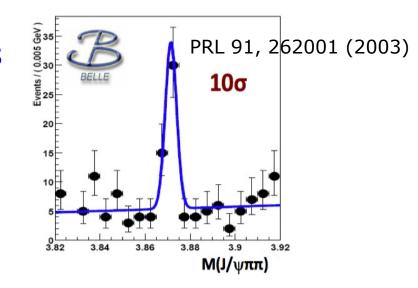
- Collected ~428 fb⁻¹ around
 Υ(4S) until now
- LS1 starts from summer 2022 to fully install the pixel detector and accelerator machine study
- Operation will be resumed around the end of 2023

Selected topics:

Quarkonium at Belle:

- \square X(3872) \rightarrow D⁰ \overline{D}^{*0} [PRD 107, 112011 (2023)]
- \Box e⁺e⁻ $\rightarrow \eta_c J/\psi$ [arXiv: 2305.17947]

Quarkonium at Belle II:

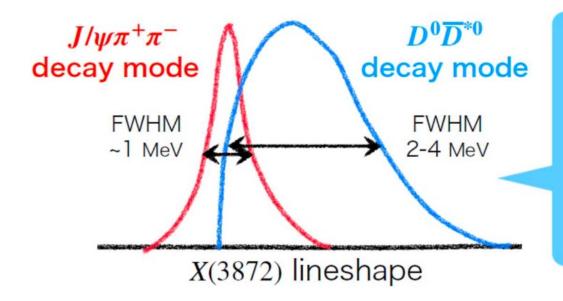

- \Box e⁺e⁻ $\rightarrow \omega \chi_{bI}$ and $X_b \rightarrow \omega \Upsilon(1S)$ [PRL 130, 091902 (2023)]
- \Box e⁺e⁻ \rightarrow B \overline{B} , B \overline{B} * and B* \overline{B} * [Preliminary]
- \Box e⁺e⁻ $\rightarrow \omega \eta_b(1S)$ and e⁺e⁻ $\rightarrow \omega \chi_{b0}(1P)$ [Preliminary]

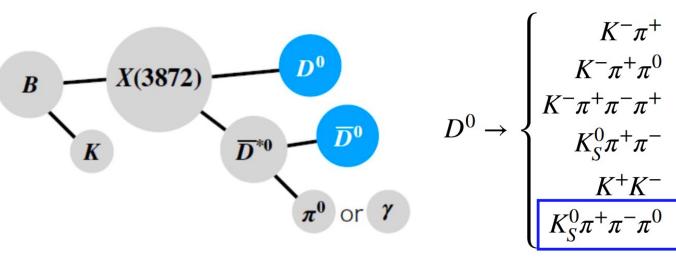
Quarkonium at Belle

A new measurement of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ at Belle

X(3872) (aka $\chi_{c1}(3872)$) – very famous exotic states

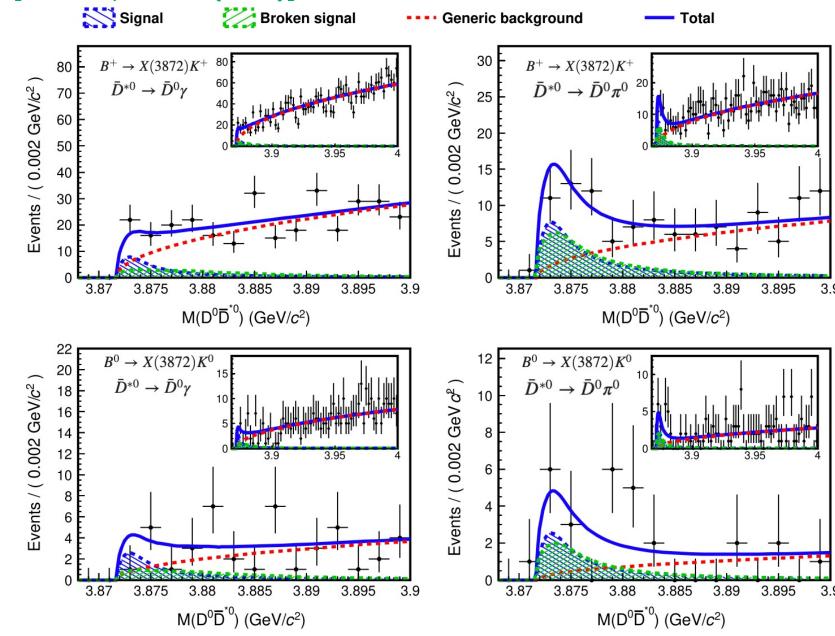
- Narrow width
- Close to DD* threshold
- No place in charmonium potential model
- $\pi\pi$ from ρ decays thus isospin-violating process




- The $X(3872) \rightarrow D^0 \overline{D}^{*0}$ decay has the largest BR.
- Determining X(3872) →
 D⁰D̄*⁰ coupling strength is
 important to discuss the
 structure

Analysis strategy

 $X(3872) \to \pi^+\pi^- J/\psi \text{ or } X(3872) \to D^0 \overline{D}^{*0}$?


- Wider lineshape
 because of phase space and threshold effect
- Better mass resolution thanks to small Q-value (~100 keV, ~1/20 of $J/\psi\pi^+\pi^-$)
- Belle experiment is suitable because $D^{*0} \rightarrow D^0 \gamma$, $D^0 \pi^0$ can be reconstructed.

Signal efficiency is improved by a factor of 1.9 compared to previous Belle measurement [PRD 81, 031103 (2010)].

Fits to $M(D^0\overline{D}^{*0})$ with a BW function

[PRD 107, 112011 (2023)]

Broken signal: at least one of the final states is wrongly assigned.

The yield ratio between signal and broken signal is fixed based on MC simulations.

Results:

- Significance: 7.5σ in total
- First observation from the B^0 decay (5.2 σ)
- Branching ratios

$$\mathcal{B}(B^{+} \to X(3872)K^{+}) \times \mathcal{B}(X(3872) \to D^{0}\bar{D}^{*0})$$

$$= (0.97^{+0.21}_{-0.18}(\text{stat}) \pm 0.10(\text{syst})) \times 10^{-4},$$

$$\mathcal{B}(B^{0} \to X(3872)K^{0}) \times \mathcal{B}(X(3872) \to D^{0}\bar{D}^{*0})$$

$$= (1.30^{+0.36}_{-0.31}(\text{stat})^{+0.12}_{-0.07}(\text{syst})) \times 10^{-4}.$$

Mass and width

$$m_{\rm BW} = 3873.71^{+0.56}_{-0.50}({\rm stat}) \pm 0.13({\rm syst}) \ {\rm MeV}/c^2$$

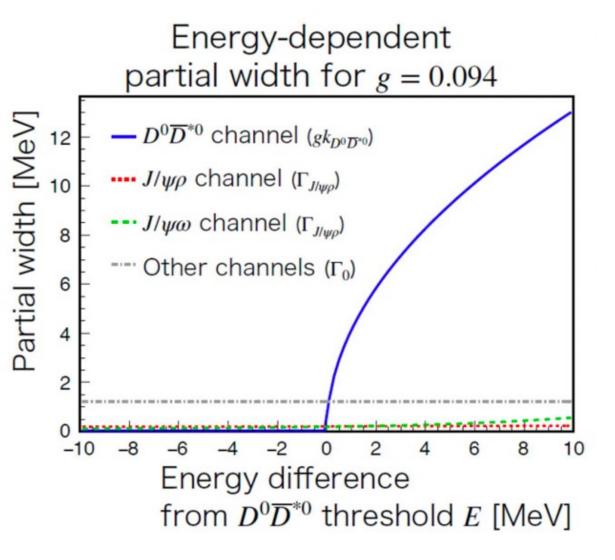
 $\Gamma_{\rm BW} = 5.2^{+2.2}_{-1.5}({\rm stat}) \pm 0.4({\rm syst}) \ {\rm MeV}$


 All are consistent with Ref. [PRD 81, 031103 (2010)]

Flatté-like model

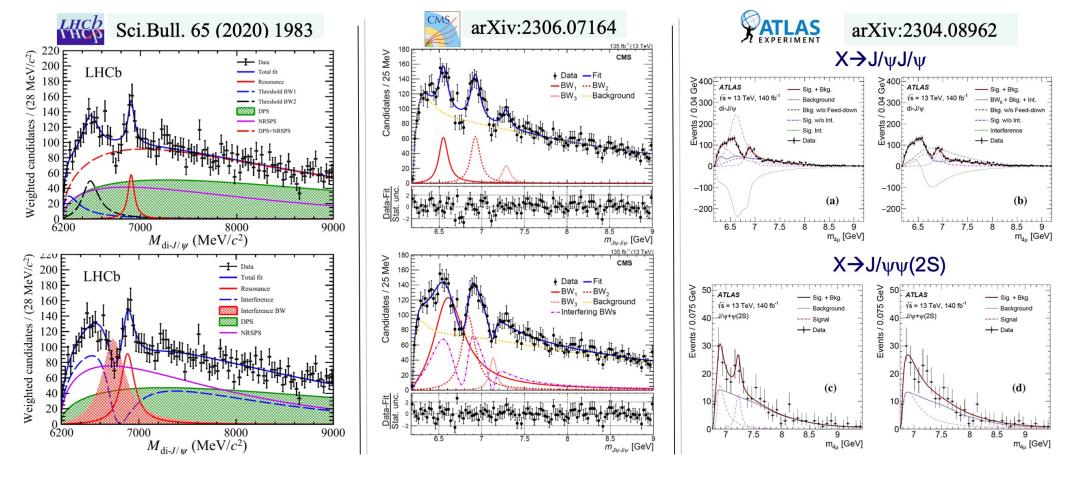

$$f(E) = \frac{gk_{D^0\overline{D}^{*0}}}{|E - E_f| + \frac{i}{2}[\Gamma_0 + \Gamma_{J/\psi\rho}(E) + \Gamma_{J/\psi\omega}(E) + \frac{g(k_{D^0\overline{D}^{*0}} + k_{D^+D^{*-}})]|^2}{|E - E_f|}$$
Mass difference from Partial widths for radiative, $J/\psi\rho$, and $J/\psi\omega$ decays $m_g: Coupling constant$ to $D\overline{D}^*$ channel $m_g: Coupling constant$ to $D\overline{D}^*$ channel $m_g: Coupling constant$ to $D\overline{D}^*$ channel $m_g: Coupling constant$

Fit does not converge w/o constraints due to poor statistics. Thus,


- $T_{J/\psi\omega}$ is fixed by world-average BR
- E_f , $T_{J/\psi\omega}$, and $T_{J/\psi\rho}$ are fixed based on LHCb results [PRD 102, 092005 (2020)]

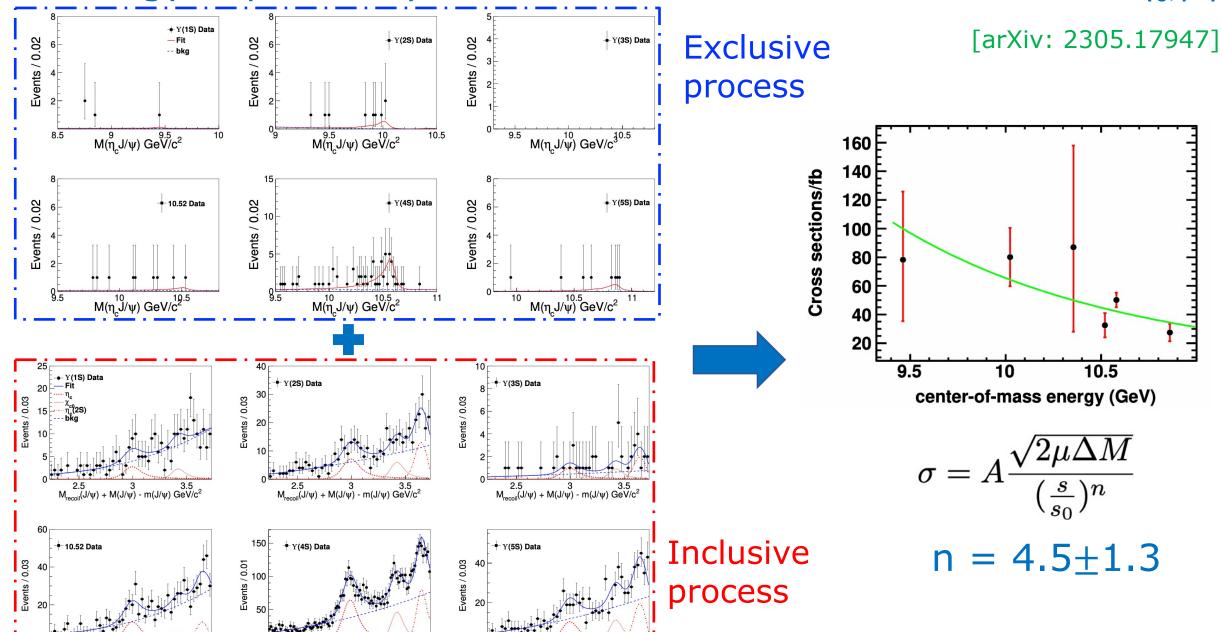
Fits to $M(D^0\overline{D}^{*0})$ with a Flatté-like function

Result and discussion



[PRD 107, 112011 (2023)]

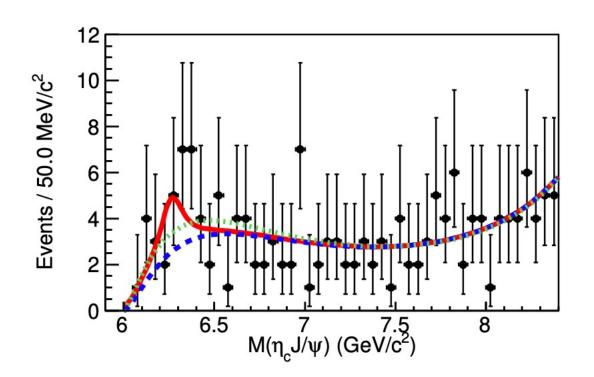
- Fit result: $g = 0.29^{+2.69}_{-0.15}$ (stat. only)
- ⇒ Lower limit: g > 0.094 (90% C.L.) including systematic uncertainty
- Partial width for $D^0\overline{D}^{*0}$ channel is rather large


Search for the double-charmonium state with $\eta_c J/\psi$ at Belle

 LHCb, CMS, and ATLAS observed new resonances in the J/ψJ/ψ (cccc) invariant mass distributions.

• The lowest mass combination of charmonia to which a vector $cc\overline{cc}$ (Y_{cc}) could decay is $\eta_c J/\psi$, and this process may have a relative large branching fraction [Phys. Rev. D 73, 094510 (2006)].

The energy dependency of the Born cross sections for $e^+e^- \rightarrow \eta_c J/\psi$

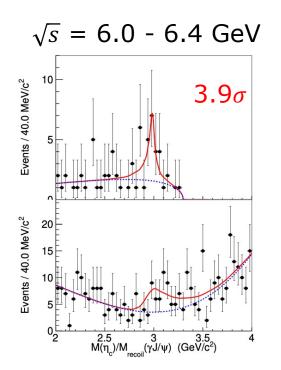

 $\begin{array}{c} 2.5 \\ M_{\text{recoil}}(J/\psi) + M(J/\psi) - m(J/\psi) \stackrel{3.5}{\text{GeV/c}^2} \end{array}$

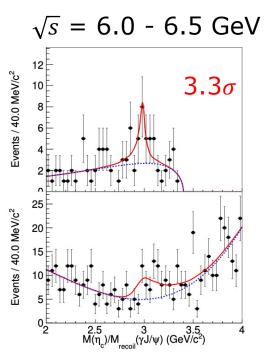
 $2.5 3 3.5 M_{recoil}(J/\psi) + M(J/\psi) - m(J/\psi) GeV/c^2$

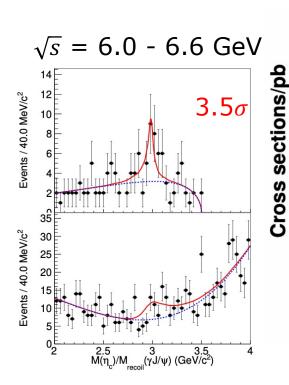
2.5 3 3.5 $M_{recoil}(J/\psi) + M(J/\psi) - m(J/\psi) \text{ GeV/c}^2$

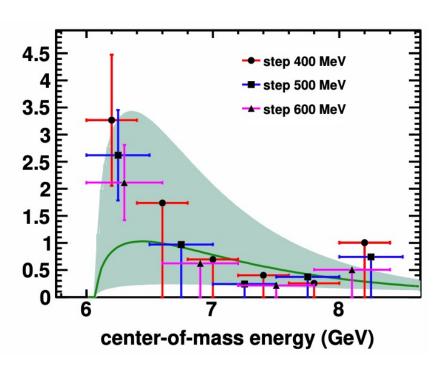
$e^+e^- \rightarrow \eta_c J/\psi$ near threshold

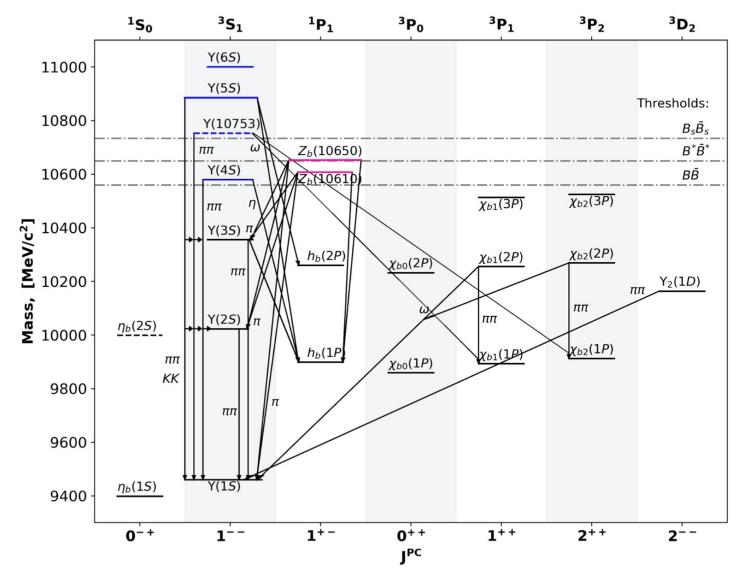
[arXiv: 2305.17947]


- Red solid curve: best fits
- Blue dashed curve: the background component
- Green dotted curve: fits without the signal component


Parameters	Exclusive	Inclusive	
Mass	(6267±43) MeV/c ²		
Width	(121±72) MeV		
Yield	9±4	23±11	
Significance	2.2σ		


Measured cross sections of $e^+e^- \rightarrow \eta_c J/\psi$ near the threshold

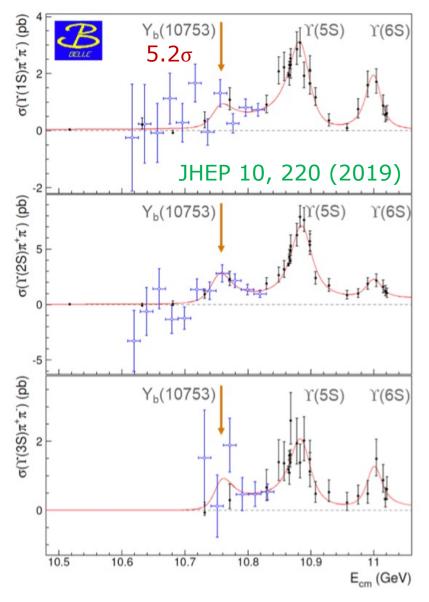

A simultaneous unbinned maximum likelihood fit for the η_c invariant mass and $\gamma_{ISR}J/\psi$ recoil mass:



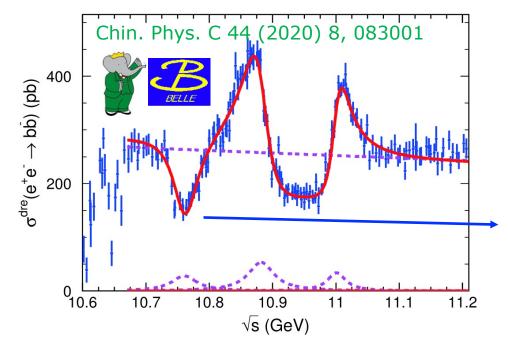
- Green solid curve: the fit
- Shadow area: $\pm 1\sigma$ region

The evidence for the enhancement of $e^+e^-\to \eta_c J/\psi$ near the threshold.

Quarkonium at Belle II

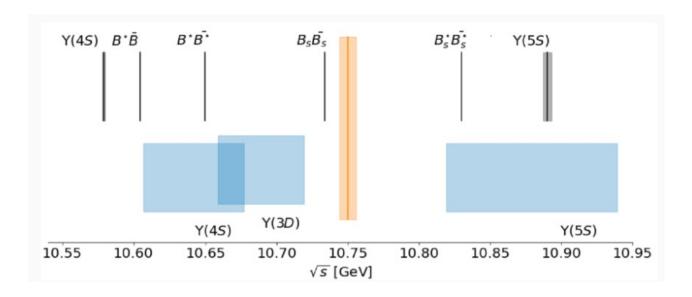

Bottomonium

- Below BB thresholds bottomonia are well described by the potential models.
- Above BB thresholds bottomonia express unexpected properties:
- Two charged Z_b^+ states are observed $(B^{(*)}\overline{B}^*$ molecular?)
- Hadronic transitions are strongly enhanced (OZI rule violation);
- η transitions are not suppressed compare to $\pi^+\pi^-$ transitions (heavy quark spin-symmetry violation);


Conventional bottomonium (pure $b\overline{b}$ states) Bottomonium-like states (mix of $b\overline{b}$ and $B\overline{B}$) Exotic charged states (Z_b^+)

Discovery of $\Upsilon(10753)$

- Belle: several $\sim 1 \text{fb}^{-1}$ scan points below $\Upsilon(5S)$
- New structure observed in $\pi^+\pi^-\Upsilon(nS)$ transitions


	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
${ m M~(MeV/c^2)}$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

A dip at 10.75 GeV may correspond to $\Upsilon(10753)$.

Theoretical interpretations

Godfrey and Moats, PRD 92, 054034 (2015)

- Mass does not match $\Upsilon(3D)$ theoretical predictions, and D-wave states are not seen in e⁺e⁻ collisions.
- $\Upsilon(4S)$ $\Upsilon(3D)$ mixing can be enhanced due to hadron loops.

□ Conventional bottomonium

Eur. Phys. J. C 80, 59 (2020)

Phys. Rev. D 101, 014020 (2020)

Phys. Rev. D 102, 014036 (2020)

Phys. Lett. B 803, 135340 (2020)

Phys. Rev. D 104, 034036 (2021)

Prog. Part. Nucl. Phys. 117, 103845 (2021)

Eur. Phys. J. Plus 137, 357 (2022)

Phys. Rev. D 105, 114041 (2022)

Phys. Rev. D 106, 094013 (2022)

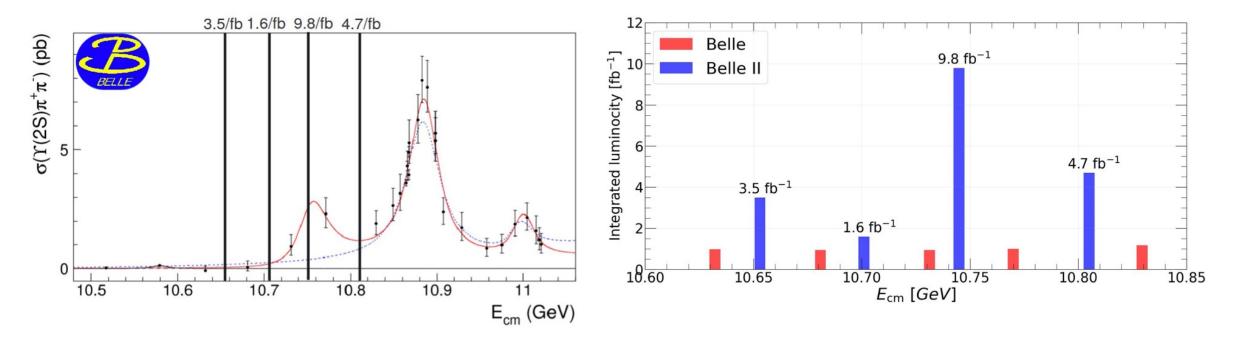
Phys. Rev. D 105, 074007 (2022)

■ Hybrid

Phys. Rept. 873, 1 (2020)

Phys. Rev. D 104, 034019 (2021)

□ Tetraquark

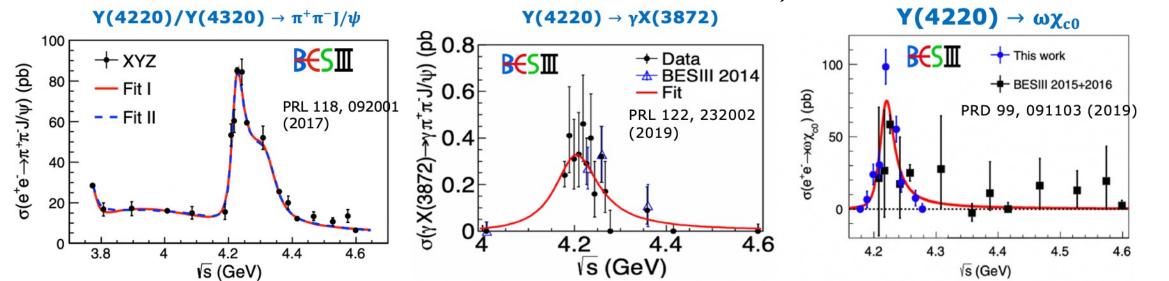

Chin. Phys. C 43, 123102 (2019)

Phys. Lett. B 802, 135217 (2020)

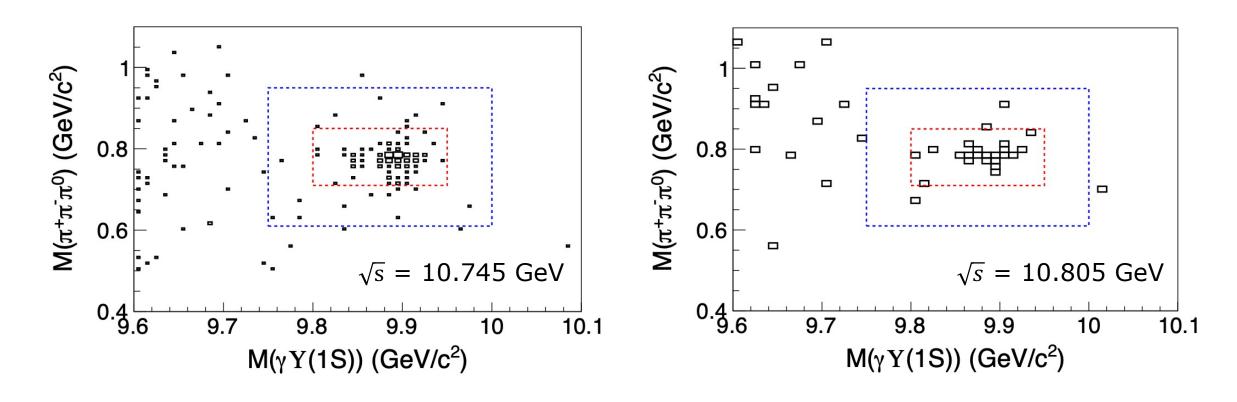
Phys. Rev. D 103, 074507 (2021)

Phys. Rev. D 107, 094515 (2023)

Unique scan data near $\sqrt{s} = 10.75$ GeV

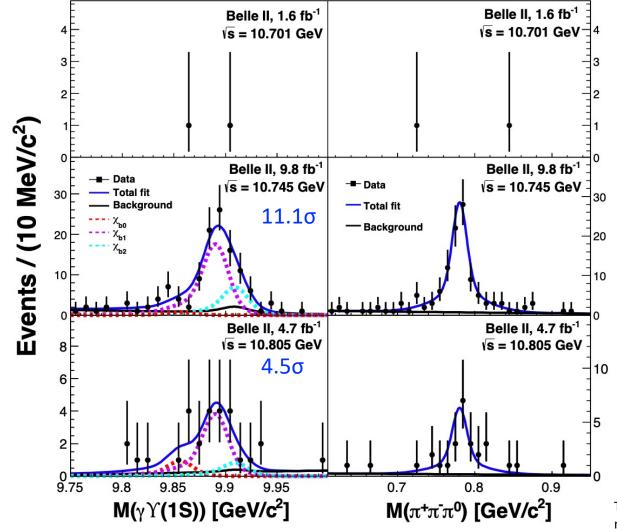

- In November 2021, Belle II collected 19 fb⁻¹ of unique data at energies above the $\Upsilon(4S)$: four energy scan points around 10.75 GeV.
- Belle II collected the data in the gaps between Belle energy scan points.
- Physics goal: understand the nature of the $\Upsilon(10753)$ energy region.

Motivation to search for $\Upsilon(10753) \rightarrow \omega \chi_{bl}$


Theory: Branching fractions of 10^{-3} for $\Upsilon(10753) \to \omega \chi_{bJ}$ [PRD 104, 034036 (2021)] and $\Upsilon(10753) \to \pi^+\pi^-\Upsilon(nS)$ [PRD 105, 074007 (2022)] assuming $\Upsilon(4S) - \Upsilon(3D)$ mixing state for $\Upsilon(10753)$.

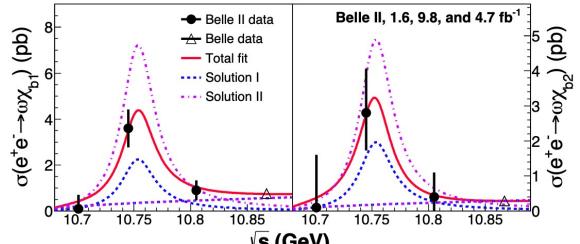
Charmonium sector:

- Two close peaks observed in the cross sections for $e^+e^- \to \pi^+\pi^- J/\psi$ by BESIII and $e^+e^- \to \pi^+\pi^- \Upsilon(nS)$ by Belle, respectively, may suggest similar nature.
- $Y(4220) \rightarrow \gamma X(3872)$ and $\omega \chi_{c0}$ observed by BESIII.
- So we expect the observations of $\Upsilon(10753) \rightarrow \gamma X_b$ and $\omega \chi_{bl}$.


Mass distributions

- Red boxes contains 95% of signals.
- Blue boxes show the fit ranges.

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}$


Two dimensional unbinned maximum likelihood fits to the M($\gamma \Upsilon(1S)$) and M($\pi^+\pi^-\pi^0$) distributions.

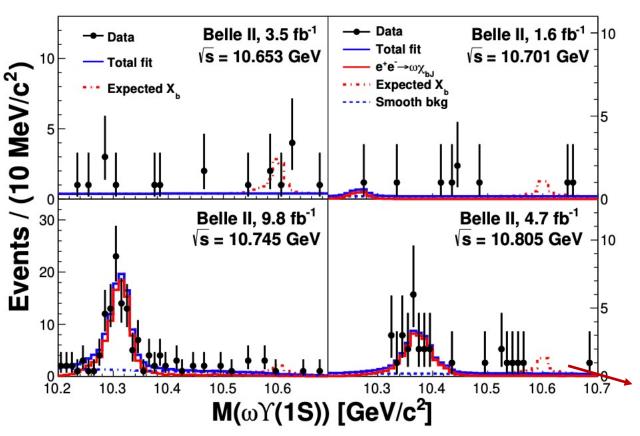
PRL 130, 091902 (2023)

Channel	√s (GeV)	Nsig	σ _{Born} (pb)
ωχ _{b1}	10 745	68.9 ^{+13.7} _{-13.5}	$3.6^{+0.7}_{-0.7}\pm0.4$
ωχ _{b2}	10.745	27.6 ^{+11.6} _{-10.0}	$2.8^{+1.2}_{-1.0}\pm0.5$
ωχ _{b1}	10 005	$15.0^{+6.8}_{-6.2}$	1.6 @90% C.L.
ωχ _{b2}	10.805	3.3 ^{+5.3} _{-3.8}	1.5 @90% C.L.

The $e^+e^- \rightarrow \omega \chi_{bJ}$ (J = 1, 2) cross sections peak at $\Upsilon(10753)$.

The points at \sqrt{s} = 10.867 GeV are from Belle measurements [PRL 113, 142001 (2014)].

Discussion


$$\frac{\sigma(e^+e^-\to\chi_{bJ}(1P)\omega)}{\sigma(e^+e^-\to Y(nS)\pi^+\pi^-)} \sim \frac{\sim 1.5 \text{ at } \sqrt{s} = 10.745 \text{ GeV [PRL 130, 091902 (2023)]}}{\sim 0.15 \text{ at } \sqrt{s} = 10.867 \text{ GeV [PRL 113, 142001 (2014)]}}$$

 \square Y(5S) and Y(10753) have same quantum numbers and similar masses, but the difference on the above ratio is large. This may indicate **the difference in the internal structures of these two states**.

$$\frac{\sigma(e^+e^- \to \chi_{b1}(1P)\omega)}{\sigma(e^+e^- \to \chi_{b2}(1P)\omega)} = 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV [PRL 130, 091902 (2023)]}$$

- □ Contradicts the expectation for a pure D-wave bottomonium state of 15 [Phys. Lett. B 738, 172 (2014)]
- □ An observation of 1.8σ difference with the prediction for a S−D−mixed state of 0.2 [Phys. Rev. D 104, 034036 (2021)]

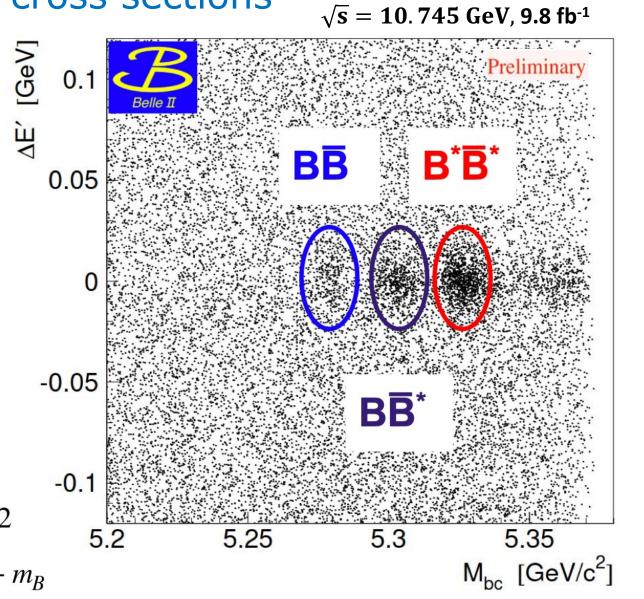
Search for X_b

PRL 130, 091902 (2023) $X_b \ \omega(\to \pi^+\pi^-\pi^0)$ $\Upsilon(1S)(\to e^+e^-/\mu^+\mu^-)$

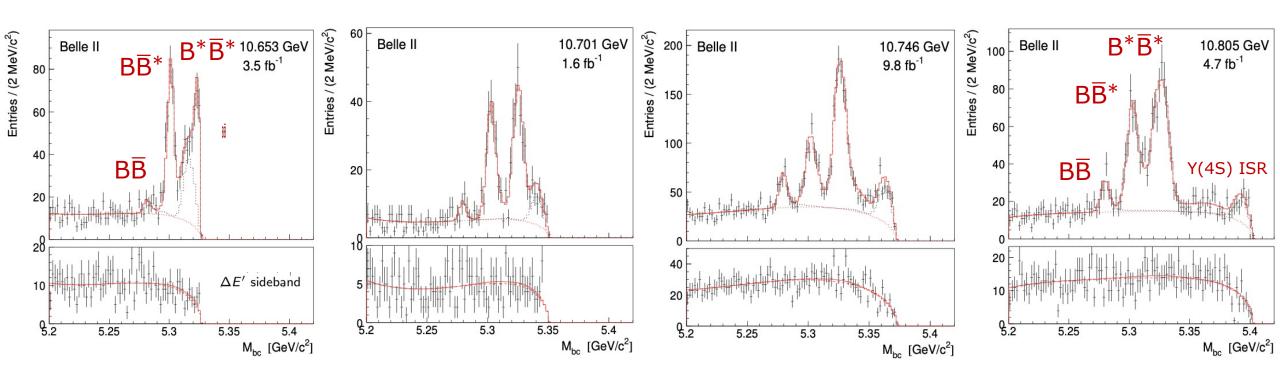
- No significant X_b signal is observed.
- The peaks are the reflections of $e^+e^- \rightarrow \omega \chi_{bI}$.

From simulated events with $m(X_b) = 10.6 \text{ GeV/c}^2$ The yield is fixed at the upper limit at 90% C.L.

Upper limits at	\sqrt{s} (GeV)	10.653	10.701	10.745	10.805
90% C.L. on	$m(X_b) = 10.6 \text{ GeV/c}^2$	0.46	0.33	0.10	0.14
$\sigma_{\rm B}({\rm e^+e^-} o \gamma {\rm X_b}) \cdot \ {\cal B}({\rm X_b} o \omega \Upsilon(1{\rm S})) \ ({\rm pb})$	$m(X_b) = (10.45, 10.65)$ GeV/c ²	(0.14, 0.55)	(0.25, 0.84)	(0.06, 0.14)	(0.08, 0.37) 27


Measurement of the energy dependence of the $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$ and $B^*\overline{B}^*$ cross sections

The B^(*)B̄^(*) are expected to be dominant decay channels for excited bottomonium-like states. Their measurements are critical for understanding these states.

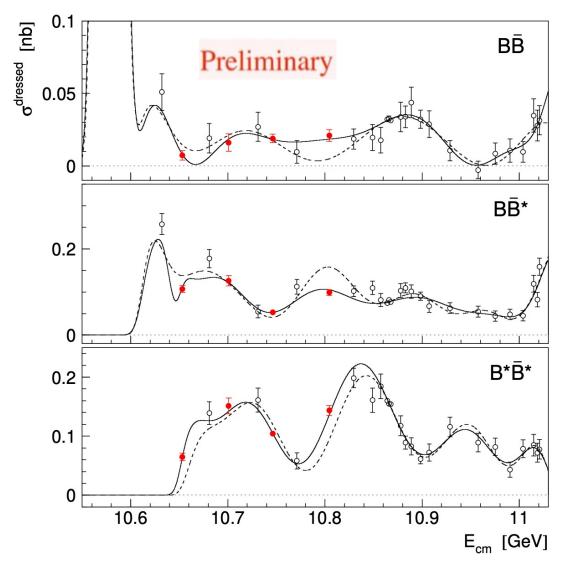

Method:

One B meson is reconstructed in hadronic channels, and signals are identified using

$$M_{bc} = \sqrt{(E_{cm}/2)^2 - P_B^2}$$

$$\Delta E = E_B - E_{cm}/2$$

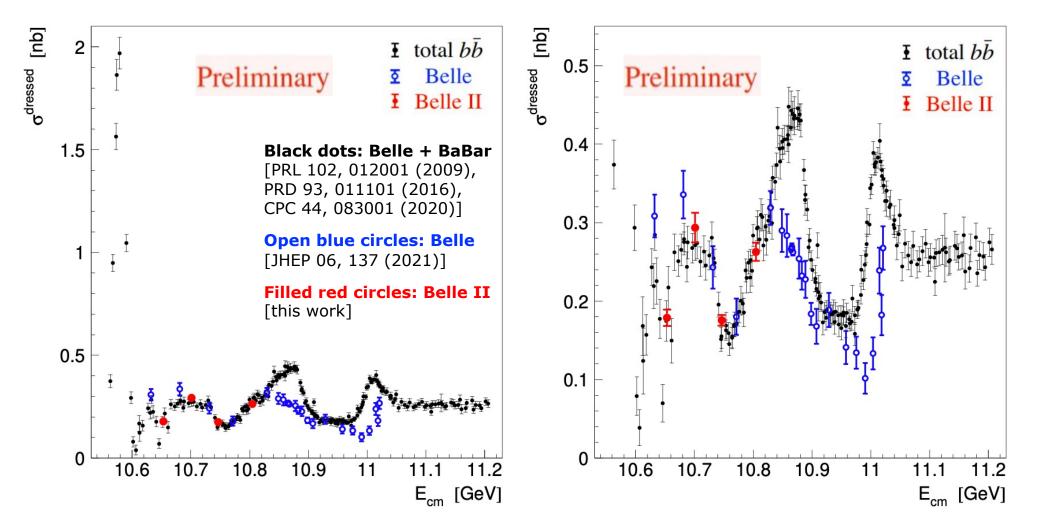
$$\Delta E' = \Delta E + M_{bc} - m_B$$



M_{bc} fit at scan energies

- $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$ and $B^*\overline{B}^*$ signals at $\sqrt{s} \sim 10.75$ GeV can be clearly observed
- Contribution of $\Upsilon(4S) \to B\overline{B}$ production via ISR is visible well (black dotted histograms)
- At $\sqrt{s} = 10.653$ GeV, the sharp cut of the data at right edge is due to threshold effect

Energy dependence of the cross sections



Solid curve – combined Belle + Belle II data fit Dashed curve – Belle data fit only

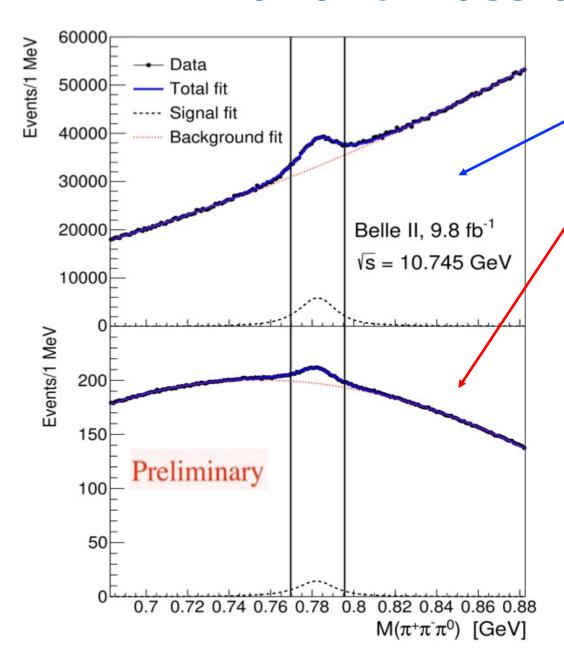
New: rapid increase of $\sigma_{B^*\bar{B}^*}$ above the threshold

- Similar behaviour was seen for $D^*\overline{D}^*$ cross section (PRD 97, 012002 (2018))
- Possible interpretation: resonance or bound state (B*B* or bb) near threshold (MPL A 21, 2779 (2006))
- Also explains a narrow dip in $\sigma(e^+e^- \to B\overline{B}^*)$ near $B^*\overline{B}^*$ threshold by destructive interference between $e^+e^- \to B\overline{B}^*$ and $e^+e^- \to B^*\overline{B}^* \to B\overline{B}^*$
- Inelastic channels $[\pi^+\pi^-\Upsilon(nS)]$ and $h_b(1P)\eta$ could also be enhanced (PRD 87, 094033 (2013))

Comparison of $\sigma_{b\bar{b}}$ and $\sigma_{B\bar{B}} + \sigma_{B\bar{B}*} + \sigma_{B*\bar{B}*}$

- Agreement at low energy
- Departure at high energy is due to $B_s^{(*)}\overline{B}_s^{(*)}$, multi-body $B^{(*)}\overline{B}^{(*)}\pi(\pi)$, and bottomonia

Search for $e^+e^-\rightarrow \omega \eta_b(1S)$ and $e^+e^-\rightarrow \omega \chi_{b0}(1P)$

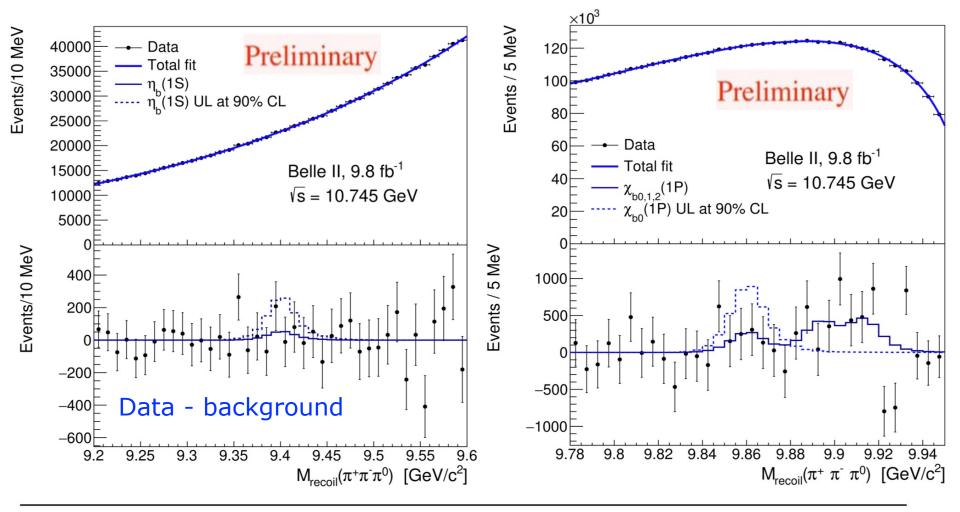

 \Box Tetraquark (diquark-antidiquark) interpretation of this state predicts enhancement of Y(10753) \rightarrow ωη_b(1S) transition [Chin. Phys. C 43, no.12, 123102 (2019)].

$$\frac{\Gamma(\eta_b \ \omega)}{\Gamma(\Upsilon \ \pi^+\pi^-)} \sim 30$$

- □ The $e^+e^- \to \omega \chi_{bJ}(1P)$ (J = 1, 2) was found to be enhanced at \sqrt{s} = 10.745 GeV (PRL 130, 091902 (2023)). The $e^+e^- \to \omega \chi_{b0}(1P)$ transition was not observed due to low $\mathcal{B}[\chi_{b0}(1P) \to \gamma \Upsilon(1S)] = (1.94 \pm 0.27)\%$.
- \Box We reconstruct only $\omega \to \pi^+\pi^-\pi^0$ and use its recoil mass to identify the signal.

$$M_{
m recoil}(\pi^+\pi^-\pi^0) = \sqrt{\left(rac{E_{
m c.m.}-E^*}{c^2}
ight)^2 - \left(rac{p^*}{c}
ight)^2}$$

Invariant mass distribution of $\pi^+\pi^-\pi^0$



9.2 < $M_{rec}(\pi^{+}\pi^{-}\pi^{0})$ < 9.6 GeV/c² ($\eta_{b}(1S)$ included)

9.78 < $M_{rec}(\pi^{+}\pi^{-}\pi^{0})$ < 9.95 GeV/c² ($\chi_{bJ}(1P)$ included)

- A double-sided Crystal Ball + a Gaussian for $\boldsymbol{\omega}$ signal
- 2nd or 3rd order Chebyshev polynomials for backgrounds
- The purities of ω -meson signals are 12.9% for $\eta_b(1S)$ and 5.3% for $\chi_{bJ}(1P)$

Recoil mass spectra of $\pi^+\pi^-\pi^0$

- A 3^{rd} polynomial for $\eta_b(1S)$
- A product of a 4^{th} polynomial and a square root function for $\chi_{b0}(1P)$
- Polynomial orders are chosen with maximum p-values
- The yields for $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ are fixed [PRL 130, 091902 (2023)].

Channel	$e^+e^- \to \eta_b(1S)\omega$	$e^+e^- \to \chi_{b0}(1P)\omega$	
Yield	$(0.23 \pm 0.49 \pm 0.25) \cdot 10^3$	$(1.2 \pm 1.4 \pm 0.9) \cdot 10^3$	

No clear $\eta_b(1S)$ and $\chi_{b0}(1P)$ signals are observed.

Born cross sections

$$\sigma_{
m B}[e^+e^- o X\omega] = rac{ extstyle N\cdot |1-\Pi|^2}{arepsilon\cdot \mathcal{L}\cdot (1+\delta_{
m ISR})\cdot \mathcal{B}_{int}}$$

Preliminary

Channel	$e^+e^- \to \eta_b(1S)\omega$	$e^+e^- \to \chi_{b0}(1P)\omega$
Yield (10^3)	$0.23 \pm 0.49 \pm 0.25$	$1.2\pm1.4\pm0.9$
Born section section (pb)	$0.5\pm1.1\pm0.6$	$2.6\pm3.1\pm2.1$
Upper limit at 90% C.L. (pb)	< 2.5	< 8.7

Upper limits at the 90%

CL are set using the Feldman-Cousins method [Phys. Rev. D 57, 3873 (1998)]

Tetraquark model in Ref. [CPC 43, 123102 (2019)]:

$$\Gamma(\Upsilon(10753) \to \eta_b(1S)\omega) = 2.64^{+4.70}_{-1.69} \text{ MeV}$$

 $\Gamma(\Upsilon(10753) \to \Upsilon\pi^+\pi^-) = 0.08^{+0.20}_{-0.06} \text{ MeV}$

This measurement and JHEP 10, 220 (2019):

$$\sigma^{B}(\Upsilon(10753) \to \eta_b(1S)\omega) < 2.5 \text{ pb}$$

$$\sigma^{B}(\Upsilon(10753) \to \Upsilon(2S)\pi^+\pi^-) \approx (3 \pm 1) \text{ pb}$$

Our results do not support the prediction within the tetraquark model that the $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ decay is enhanced.

Quarkonium prospects at Belle II

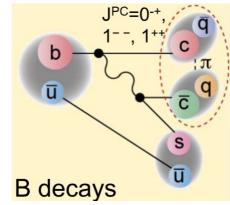
Production of Charmonium(-like) states at B-factory

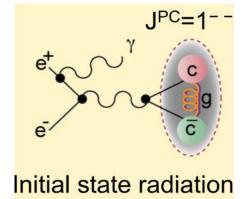
♦ B decay (B \rightarrow KX_{c \bar{c}})

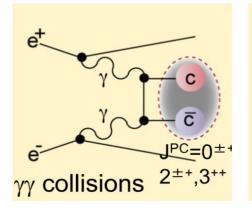
✓ CKM favored process, large branching fractions $10^{-3} \sim 10^{-4}$

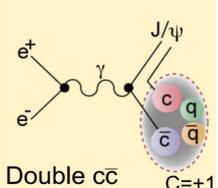
$$\checkmark J^{PC} = 0^{-+}, 1^{--}, 1^{++}, \dots$$

♦ Initial-state radiation (ISR)

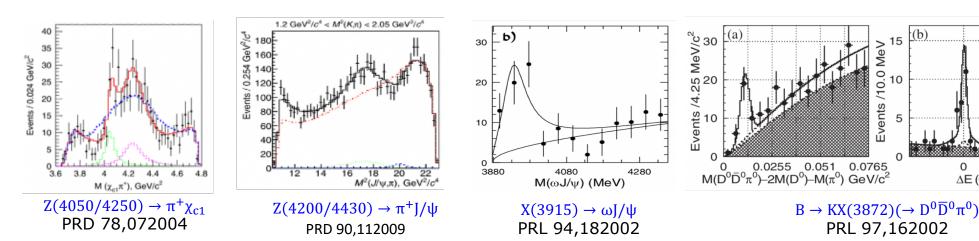

$$\checkmark I^{PC} = 1^{--}$$


◆ Two-photon process


$$\checkmark J^{PC} = 0^{-+}, 0^{++}, 2^{++}, 2^{-+}, \dots$$


♦ Double charmonium

 \checkmark e.g. e⁺e⁻ → J/ ψ X(3940) [PRL 98,082001(2007)]

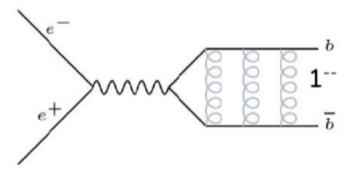


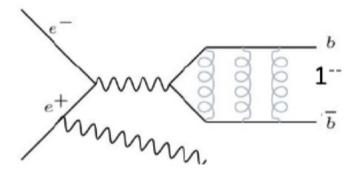
Charmonium(-like) states via B decays

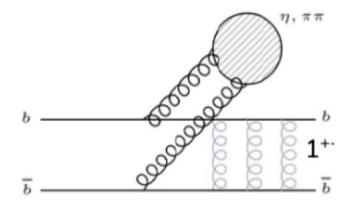
- \square Confirm Z_c states $Z(4050)^+$, $Z(4200)^+$, $Z(4250)^+$ and search for neutral partners
- □ Full amplitude analysis to B → KωJ/ψ and B → Kωχ_{c1} to determine the spin-parties of X(3915), Z(4050)⁺ and Z(4250)⁺.
- □ Confirmation of X(3872) width measurement with $D^0\overline{D}^0\pi^0$ mode, search for more open-flavor decay modes, e.g., $B \to K(D\overline{D})$, $B \to K(D\overline{D}^*)$, $B \to K(D^*\overline{D}^*)$, $B \to K(D^*\overline{D}^*)$, $B \to K(D^*\overline{D}^*)$... with more B mesons
- ☐ Absolute branching fractions are unique for Belle II
- \square Systematic investigations of charmonium plus light hadron final states: $B \to K(c\bar{c}+h)$

 ΔE (GeV)

Bottomonium(-like) prospects at Belle II


Four ways to access bottomonia:

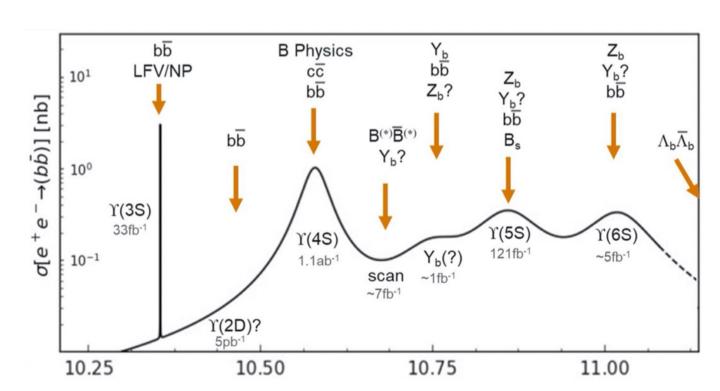

- Direct production from e⁺e⁻: J^{PC} = 1⁻⁻: Υ(nS)
- ISR production: $J^{PC} = 1^{--}$: $\Upsilon(nS)$
- Hadronic transitions from $\Upsilon(nS)$ through η , $\pi\pi$, ...


$$J^{PC} = 0^{-+}, 1^{--}, 1^{+-} \dots : \Upsilon(nS), \eta_b(nS), h_b(nS), \dots$$

Radiative transitions from Υ(nS)

$$J^{PC} = 0^{-+}, 0^{++}, 1^{++}, 2^{++}: \eta_b(nS), \chi_b(nP)$$

Bottomonium(-like) prospects at Belle II


Run at Y(6S) and Y(5S) and high energy scan:

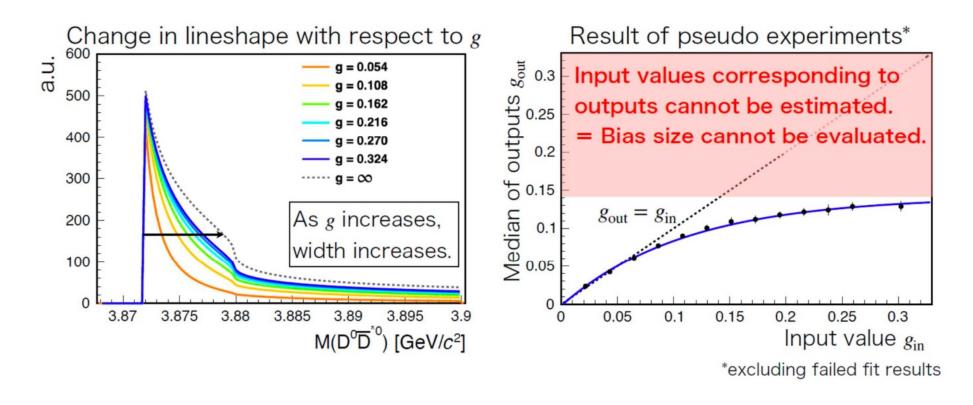
- Search for new missing bottomonia $\eta_b(3S)$, $h_b(3P)$, $\Upsilon(D)$, exotic states Y_b , Z_b , etc
- Improve precision of already known processes and states, e.g., Z_b
- Measure the effect of the coupled channel contribution
- Study $B^{(*)}\overline{B}^{(**)}$ and $B_s^{(*)}B_s^{(**)}$ threshold regions (challenging for Super-KEKB)

Run at Y(3S) and Y(2S):

- Search for missing $\pi\pi/\eta$ transitions in inclusive decays to constrain further models
- Search for new physics:

LFV, LFU, light Higgs, ...

Summary


- The g > 0.094 (90% C.L.) is determined for $X(3872) \rightarrow D^0 \overline{D}^{*0}$
- Evidence for $e^+e^- \rightarrow \eta_c J/\psi$ near the threshold
- New decay modes of $\Upsilon(10753) \rightarrow \omega \chi_{bl}$ are observed
- The rapid increase of $\sigma_{B^*\bar{B}^*}$ above the threshold may imply a resonance of $B^*\bar{B}^*$ or $b\bar{b}$
- The stringent upper limit is set for the $e^+e^- \rightarrow \omega \eta_b(1S)$ at $\sqrt{s}=10.745$ GeV
- We expect more promising quarkonium results in the near future at Belle II with larger data samples

Thanks for your attention!

Backup slides

Fit bias

• Lineshape converges to a fixed form for large g

 \rightarrow Only lower limit can be obtained for large g