

Recent lattice QCD studies on multiquark states

Ying Chen

Institute of High Energy Physics, Chinese Academy of Sciences, China

8th XYZ Workshop, Jilin, July 25-30, 2023,

Outline

- I. Introduction
- **II.** Heavy flavored multiquark states
- **III.** Charmonium(like) states and their decays
- **IV.** Summary and perspectives

I. Introduction

1. Lattice QCD formalism

Path integral quantization on finite Euclidean spacetime lattices

- Very similar to a statistical physics system
- Monte Carlo simulation——importance sampling according to $\mathcal{P}[U] \propto \det M[U] e^{-S_g[U]}$

Gauge ensemble: $\{U_i(\text{spacetime}), i = 1, ..., N\} \implies \langle \widehat{\mathcal{O}}[U, \psi, \overline{\psi}] \rangle = \frac{1}{N} \sum_i \mathcal{O}[U_i] + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$

2. New hadron states that has heavy quarks

- Ever since the discovery of X(3872), a large number of charmium(-like) structures have been observed by various experiments (BESIII, BaBar, Belle, CDF, D0, ATLAS, CMS and LHCb).
- All of the XYZ states are above or at least in the vicinity of the open-charm thresholds, and are good candidates for hadron molecules.
- Apart from charmium-like states, LHCb observed several P_c states in $J/\psi p$ final states

$P_c(4312), (4380), P_c(4440), P_c(4457)$

- In 2021, LHCb observed the first doubly charmed structure $T_{cc}^+(3875)$.
- More states will be coming.
- Their properties are worthy of a investigation in depth.
- Lattice QCD plays an important role, and are collaborative efforts along with phenomenological studies in this sector.

3. The methodology for studying hadron-hadron scattering in lattice QCD State-of-art Approach—Lellouch-Lüscher's formalism (see R. Briceno et al., Rev. Mod. Phys. 90 (2018) 025001 for a review).

 $\det\left[F^{-1}\left(\overrightarrow{P}, E, L\right) + \mathcal{M}(E)\right] = \mathbf{0}$

 $E_n(L)$: Eigen-energies of lattice Hamiltonian.

- Interpolation field operator set for a given J^{PC} $\mathcal{O}_i: \ \overline{q}_1 \Gamma q_2 \ [\overline{q}_1 \Gamma_1 q] [\overline{q} \Gamma_2 q_2] \ [q_1^T \Gamma_1 q] [\overline{q} \Gamma_2 \overline{q}_2^T], ...$
- Correlation function matrix —— Observables

$$C_{ij}(t) \&= \left\langle \Omega \middle| \mathcal{O}_i(t) \mathcal{O}_j^+(0) \middle| \Omega \right\rangle$$
$$= \sum_{n} \left\langle \Omega \middle| \mathcal{O}_i \middle| n \right\rangle \left\langle n \middle| \mathcal{O}_j^+ \middle| \Omega \right\rangle e^{-E_n t}$$

All the energy levels $E_n(L)$ are discretized.

 $F\left(\vec{P}, E, L\right)$: Mathematically known function matrix in the channel space (the explicit expression omitted

$$\mathcal{L} \underbrace{\mathbf{v}}_{\mathbf{R}} = \mathcal{L} \underbrace{\mathbf{v}}_{\mathbf{R}} \equiv -\mathcal{L}(P) \ F(P,L) \ \mathcal{R}^{\dagger}(P)$$

$\mathcal{M}(E)$: Scattering matrix.

• Unitarity requires

$$\mathcal{M}_{ab}^{-1} = (\mathcal{K}^{-1})_{ab} - i\delta_{ab} \frac{2q_a^*}{E_{cm}}$$

- \mathcal{K} is a real function of *s* for real energies above kinematic threshold.
- The pole singularities of $\mathcal{M}(s)$ in the complex *s*-plane correspond to bound states, virtual states, resonances, etc..

II. Heavy flavored multiquark states

1. Lattice studies of T_{cc}^+ (3875)

LHCb discovered T⁺_{cc}(3875) in 2021 (LHCb, Nature Phys.18, 751 (2022), Nature Comm.13, 3551 (2022))

$$\begin{split} M_{T_{cc}} - \left(m_{D^0} + m_{D^{*+}} \right) &= -273 \pm 61 \pm 5^{+11}_{-14} \, \mathrm{keV} \\ \Gamma_{BW} &= 410 \pm 165 \pm 43^{+18}_{-38} \, \mathrm{keV} \\ \Gamma^U_{BW} &= 48 \pm 2^0_{-14} \, keV \end{split}$$
Isospin: Only observed in DD^{*+} , therefore I = 0

The minimum quark configuration: $cc\bar{u}\bar{d}$

- Spured extensive and intensive phemonenological investigations
- Likely a *DD** hadronic molecule
- A relay race of lattice studies—make the things clearer!

Pole singularity:M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129 (2022) 032002Dynamics underlying:S. Chen et al., Phys. Lett. B 833, 137391 (2022)Interaction potential:Y. Lyu et al., arXiv:2302.04505 (hep-lat)

Either bound or virtual, it affects the cross-section and results in an enhancement near the threshold.

B. Investigation of the isospin-dependent interaction of DD^* scattering

(S. Chen et al., Phys. Lett. B 833, 137391 (2022))

- *DD*^{*} energies and scattering momenta can be derived precisely
- Single-channel Lüscher's formula applied
- $I = 1 DD^*$ is repulsive, $I = 0 DD^*$ is repulsive (sign of a_0)
- Quark diagrams (after Wick's contraction) contributing to DD* correlators

$$C_{DD^*}^{(I)}(t) = D + C_1 + (-)^{I+1}(C_2 + D')$$

$$p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + O(p^4)$$

$$\int_{\frac{1}{1-p}}^{\frac{1}{1-p}} \int_{\frac{1}{2}}^{\frac{1}{1-p}} \int_{\frac{1}{2}}^{\frac{1}{1-p}}$$

$$I = 1: \text{ repulsive} \qquad I = 0: \text{ attractive}$$

$$\Delta E_{DD}^{(l)} \approx \epsilon_1 \delta E_1 + (-)^{I+1} \epsilon_2 \delta E_2$$

$$(\epsilon_2 > \epsilon_1 > 0, \quad \delta E_2 \ge \delta E_1) \qquad D_i^{+} c_0^{-} c_0^{-} D_i^{+} d_0^{-} c_0^{-} D_i^{+} d_0^{-} d_0^{-}$$

 Initiatively interprets the underlying physics by analyzing the quark diagrams in lattice QCD calculations

Schematic quark diagrams

B. Investigation of the isospin-dependent interaction of DD^* scattering

(S. Chen et al., Phys. Lett. B 833, 137391 (2022))

- *DD*^{*} energies and scattering momenta can be derived precisely
- Single-channel Lüscher's formula applied
- $I = 1 DD^*$ is repulsive, $I = 0 DD^*$ is repulsive (sign of a_0)
- Quark diagrams (after Wick's contraction) contributing to DD* correlators

 $C_{DD^*}^{(I)}(t) = D + C_1 + (-)^{I+1}(C_2 + D')$

- ✓ D' term is negligible.
- ✓ C_2 term is responsible for the energy difference of $DD^*(I = 1)$ and $DD^*(I = 0)$.
- ✓ C_2 term can be understood as the exchange of charged vector ρ meson, which provides attractive (repulsive) interaction for I = 0 (I = 1)
- This is in qualitative agreement with phenomenological studies (Dong et al. CTP73 (2021) 125201, Feijoo et al, PRD104(2021)114015)
- Initiatively interprets the underlying physics by analyzing the quark diagrams in lattice QCD calculations

 $p\cot\delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \mathcal{O}(p^4)$ I = 1: repulsive I = 0: attractive $\int_{-\infty}^{u} D^{*0}$

Schematic quark diagrams

C. Hadron-hadron interaction potential—HALQCD approach (Y. Lyu et al., arXiv:2302.04505 (hep-lat))

- (2+1)-flavor QCD on the 96⁴ lattice with $m_{\pi} = 146.4$ MeV, L=8.1 fm
- Calculate the correlation functions

$$R(\vec{r},t) = e^{(m_{D^*}+m_D)t} \sum_{\vec{x}} \langle 0 | D^*(\vec{x}+\vec{r},t) D(\vec{x},t) \bar{\mathcal{J}}(0) | 0 \rangle = \sum_n A_n \psi_n(\vec{r}) e^{-\Delta E_n t} + \cdots$$

• The function $R(\vec{r}, t)$ satisfies the Shrödinger-type equation

 $\left[\frac{1+3\delta^2}{8\mu}\partial_t^2 - \partial_t - H_0 + \cdots\right] R(\vec{r},t) = \int d\vec{r}' \, U(\vec{r},\vec{r}')R(\vec{r},t), \qquad H_0 = -\frac{\nabla^2}{2\mu}, \qquad \mu = \frac{m_D^* m_D}{m_{D^*} + m_D}, \qquad \delta = \frac{m_{D^*} - m_D}{m_{D^*} + m_D},$

• Takes the leading term of derivative expansion of the non-local $U(\vec{r}, \vec{r}')$

$$U(\vec{r},\vec{r}') \approx V(\vec{r})\delta(\vec{r}-\vec{r}'), \qquad V(r) = R^{-1}(\vec{r},t) \left[\frac{1+3\delta^2}{8\mu}\partial_t^2 - \partial_t - H_0 + \cdots\right] R(\vec{r},t)$$

- The DD^* potential in the $(I, J^P) = (0, 1^+)$ channel is attractive.
- Short range: attractive diquark-antidiquark $(\bar{u}\bar{d} cc)$ Long range: two-pion exchange is favored:

$$V_{fit}^{B}(r; m_{\pi}) = \sum_{i=1,2} a_{i} e^{(-r/b_{i})^{2}} + a_{3} \left(\frac{1}{r} e^{-m_{\pi}r}\right)^{2} \cdots$$

Different from phenomenological expectation that *ρ*-exchange dominates?

Nambu-Bethe-Salpeter

wave function

 Using the derived potential, the S-wave phase shifts δ₀ is obtained by solving the Schrödinger equation of DD* system, which is put into the ERE

$$p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \mathcal{O}(p^4)$$

• Extrapolate to the physical m_{π} ,

$$V_{fit}^B(r; m_\pi) \to V_{fit}^B\left(r; m_\pi^{\text{phys}}\right)$$

one gets

$m_{\pi} [{\rm MeV}]$	146.4	135.0
$1/a_0 \; [{\rm fm}^{-1}]$	$0.05(5)\binom{+4}{-1}$	-0.02(4)
$r_{ m eff}~[{ m fm}]$	$1.14(6) \binom{+1}{-9}$	1.14(8)
$\kappa_{ m pole} [{ m MeV}]$	$-9(9) \begin{pmatrix} +1 \\ -8 \end{pmatrix}$	+3(8)
$E_{\rm pole} \ [\rm keV]$	$-45(77)^{+02}_{-99}$	-10(37)
<u> </u>	\ / (-33)	· · · · ·

consistent with the large negative scattering length a_0 of a bound state ($k = i\kappa_{pole}$).

• This result is consistent with the extrapolated a_0 using the existing lattice results.

- Fit to the $D^0 D^0 \pi^+$ mass spectrum of LHCb experimental data
 - ✓ The gray band: the theoretical obtained by using $V_{fit}^B(r; m_{\pi})$ at $m_{\pi} = 146.4$ MeV
 - ✓ The red band: $D^0 D^0 \pi^+$ mass spectrum obtained by chiral extrapolated $V_{fit}^B(r; m_\pi)$ at $m_\pi = 135.0$ MeV
 - Consistent with the trend of evolution from a near-threshold virtual state into a loosely bound state.

To summarize,

- ✓ The existing lattice results of $T_{cc}^+(3875)$ relevant studies are consistent with each other;
- ✓ These results support the existence of a DD^* bound state in the I = 0 channel.
- ✓ The interaction potential study (C) suggests that the two-pion exchange dominates the long range interaction, while study (B) supports the charged-*ρ* exchange that provides an attractive interaction for *I* = 0 *DD** system near the threshold, as expected by phenomenological studies.

A. BB potential and $\overline{b}\overline{b}ud$ $(I(J^P) = 0(0^+))$ tetraquark bound states using lattice QCD

- Static anti-heavy quarks
- The $r_{\overline{b}\overline{b}}$ dependence of the *BB* system defines the potential.
- The Schrödinger equation is solved to give the binding energy.
- A bound state exists in the $I(J^P) = O((0,1)^+)$ channel

 $E_B = -90^{+43}_{-36} \text{ MeV}$ and no binding in the $I(J^P) = 1(1^+)$ channel. (P. Bicudo et al. Phys. Rev. D 93 (2016) 034507)

A bound state exists in the I(J^P) = 0(1⁺) DD^{*} and D^{*}D^{*} coupled channel

 $E_B = -59^{+30}_{-38}$ MeV (P. Bicudo et al. Phys. Rev. D 95 (2017) 034502)

B. $\overline{b}\overline{b}ud\left(I(J^P) = 0(0^+)\right)$ tetraquark bound state hinted by negative binding energy

- Chiral extrapolation
- Continuum extrapolation

P. Junnarkar et al., Phys. Rev. D 99, 034507 (2019)

C. $BB^* - B^*B^*$ coupled channel potential and $\overline{b}\overline{b}ud$ $(I(J^P) = 0(1^+))$ — HALQCD formalism

(S. Aoki and T. Aoki, PoS LATTICE2022, 049 (2023))

- Calculate the NBS wave function to derive the potential of $BB^* B^*B^*$ coupled channel potential.
- Solve the Lippmann-Schwinger equation to get the scattering phase of the *BB*^{*} single channel.

• The linear chiral extrapolation of the binding energy in m_{π}^2 gives

 $E_B^{\text{single}} = -154.8 \pm 17.2 \text{ MeV},$ $E_B^{\text{couple}} = -83.0 \pm 10.2 \text{ MeV}$

• Corroborate the previous lattice results.

D. $b\bar{b}qq'$ (1⁺) systems explored in the Lellouch-Lüscher formalism

• For the $\overline{b}\overline{b}ud$ (0(1⁺)) system, phase shifts $\delta_0(k)$ are calculated at five m_{π} values.

All the cases give negative E_B , which are extrapolated to the value at the physical m_π :

 $E_B = -128 \pm 24 \pm 10 \text{ MeV}$

(L. Leskovec et al. Phys. Rev. D 100 (2019) 014503)

• Clear evidence for a $\overline{b}\overline{b}us$ (1⁺) tetraquark:

 $E_B = -86 \pm 22 \pm 10$ MeV but strong discrepancies, even on the qualitive level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

D. $\overline{b}\overline{b}qq'$ (1⁺) systems explored in the Lellouche-Luescher formalism

• For the $\overline{b}\overline{b}ud$ (0(1⁺)) system, phase shifts $\delta_0(k)$ are calculated at five m_{π} values.

To summarize:

- ✓ All the existing lattice QCD studies indicate the existence of $T_{bb}(0(1^+))$
- ✓ However, the predicted banding energy E_B varys in the range (-40) (-130) MeV.
- \checkmark The absolute value $|E_B|$ is quite larger than that of $T_{cc}^+(3875)$.

$E_B = -86 \pm 22 \pm 10 \text{ MeV}$

but strong discrepancies, even on the qualitive level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

3. P_c states and $\Sigma_c D(D^*)$ scatterings (H. Xing et al., arXiv:2210.08555)

- LHCb observed several P_c states in $J/\psi p$ final state $P_c(4312)$, $P_c(4380)$, $P_c(4440)$, $P_c(4457)$ which must have the minimal quark configuration $uudc\bar{c}$.
- The $J^P = \frac{1}{2} \Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ scatterings are investigated via the Leuscher's method:

• Comment: The $J/\psi p - \Sigma_c D^{(*)}$ coupled channel effects have not been considered. They can be important, since P_c states are observed in the $J/\psi p$ invariant mass spectrum.

3. Dibaryon $\Omega_{bbb}\Omega_{bbb}$ from lattice QCD (N. Mathur et al., Phys. Rev. Lett. 130 (2023) 111901)

III. Charmonium(like) states and their decays

1. $J^{PC} = (0,2)^{++}$ charmoniumlike resonances in coupled $D\overline{D}$ and $D_s\overline{D}_s$ scattering

(S. Prelovsek et al., JHEP 06 (2021) 035)

- Relevant to X(3860), X(3930) and X(3915), which are near $D\overline{D}$ and $D_s\overline{D}_s$ thresholds.
- The operator set includes $\bar{c}c$ operators and $(D\bar{D}, D_s\bar{D}_s)$ operators with different relative momenta.
- Lellouch-Luescher formalism is implemented.
 - ✓ A 0⁺⁺ shallow bound state ($E_B \sim -4$ MeV) is observed right below the $D\overline{D}$ threshold.
 - ✓ A narrow resonance appears just below the $D_s \overline{D}_s$ threshold, which may have connections with χ_{c0} (3930) and X(3915)
 - Consistent with the trend of evolution from a near-threshold virtual state into a loosely bound state.
 - ✓ The single channel analysis of $L = 2 D\overline{D}$ scattering find a 2⁺⁺ resonance, whose properties are consistent with χ_{c2} (3930).

A 0^{++} shallow bound state in s-wave $D\overline{D}$ scattering

A 0^{++} shallow bound state in s-wave $D_s \overline{D}_s$ scattering

2. Decays of charmoniumlike 1^{-+} hybrid η_{c1} (C. Shi et al., arXiv: 2306.12884 (hep-lat))

- There exist candidates for light 1^{-+} hybrids, such as $\pi_1(1600)$ and $\eta_1(1855)$.
- The charmonium like counterpart η_{c1} of η_1 is expected. Lattice QCD predicts $m_{\eta_{c1}} \sim 4.2 4.4$ GeV.
- Two body decay modes of η_{c1} : $D_1\overline{D}$, $D^*\overline{D}$, $D^*\overline{D}^*$, $\chi_{c1}\eta(\eta')$, $\eta_c\eta(\eta')$, $J/\psi\omega(\phi)$
- The first lattice QCD calculation of the partial widths of these decays is presented.

Lattice methodology (C. McNeile & C. Michael, Phys. Lett. B 556 (2003) 177)

For the two-body decay $\eta_{c1} \rightarrow AB$, in the space spanned by $|\eta_{c1}\rangle$ and $|AB\rangle$ $(m_{\eta_{c1}} > E_{AB})$

Amplitudes for $\eta_{c1} \rightarrow AB$ from the Lagrangian

-

IE	$N_s^3 \times N_t$	β	$a_t^{-1}(\text{GeV})$	ξ	$m_{\pi}(\text{MeV})$	N_V	$N_{\rm cfg}$
L16	$16^3 \times 128$	2.0	6.894(51)	~ 5.3	~ 350	70	708
L24	$24^3 \times 192$	2.0	6.894(51)	~ 5.3	~ 350	160	171

$$\frac{\mathcal{C}_{\eta_{c1},AB}(t)}{\sqrt{\mathcal{C}_{\eta_{c1}}(t)\mathcal{C}_A(t)\mathcal{C}_B(t)}} \to -(ax) t \left(1 + \frac{1}{24} (a\Delta t)^2\right)$$

$$\begin{split} x_{AP}^{\lambda'\lambda} = & g_{AP} m_{\eta_{c1}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \vec{\epsilon}_{\lambda'}^{**}(\vec{k}), \\ x_{PP}^{\lambda} = & 2g_{PP} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \vec{k}, \\ x_{D^{*}\bar{D}}^{\lambda'\lambda} = & g_{D^{*}\bar{D}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot (\vec{\epsilon}_{\lambda'}^{**}(\vec{k}) \times \vec{k}), \\ x_{D^{*}\bar{D}^{*}}^{\lambda'\lambda''\lambda} = & 2g_{D^{*}\bar{D}^{*}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \left(\vec{k} \times \left[\vec{\epsilon}_{\lambda'}^{**}(\vec{k}) \times \vec{\epsilon}_{\lambda''}^{**}(-\vec{k})\right]\right) \end{split}$$

Efffective couplings g_{AB} are derived as follows:

$\begin{array}{c} \text{Mode} \\ (AB) \end{array}$	$\hat{k}(\mathrm{IE})$	$r_1 \ (\times 10^{-3})$	g_{AB}	g_{AB} (ave.)	Γ_{AB} (MeV)
$D_1 \bar{D}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	4.95(5) 3.10(26)	$\begin{array}{c} 4.27(5) \\ 4.92(41) \end{array}$	4.6(6)	258(133)
$D^*\bar{D}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$1.11(3) \\ 0.78(7)$	8.35(21) 8.34(74)	8.3(7)	88(18)
$D^*\bar{D}^*$	$\begin{array}{c} (1,1,1)(L16) \\ (1,1,0)(L16) \\ (2,0,0)(L24) \\ (1,1,1)(L24) \end{array}$	$1.00(3) \\ 1.15(4) \\ 1.05(9) \\ 0.67(7)$	$\begin{array}{c} 3.44(12) \\ 3.79(12) \\ 5.06(42) \\ 6.31(58) \end{array}$	4.6(1.8)	150(118)
$\chi_{c1}\eta_{(2)}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	2.04(26) 1.18(38)	1.31(2) 1.39(45)	1.35(45)	_
$\eta_c\eta_{(2)}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$0.20(6) \\ 0.10(3)$	$\begin{array}{c} 0.62(18) \ 0.47(12) \end{array}$	0.55(22)	-

The $m_{\eta_{c1}}$ -dependence of partial decay widths

$$|\boldsymbol{D}^* \overline{\boldsymbol{D}}^* \rangle_{(\boldsymbol{C}=+)}^{(\boldsymbol{I}=\boldsymbol{0})} = \frac{1}{\sqrt{2}} (|\boldsymbol{D}^{*+} \boldsymbol{D}^{*-} \rangle + |\boldsymbol{D}^{\boldsymbol{0}*} \overline{\boldsymbol{D}}^{\boldsymbol{0}*} \rangle)_{(\boldsymbol{L}=\boldsymbol{1})}^{(\boldsymbol{S}=\boldsymbol{1})}$$

$$L + S = \text{even}$$

• For $m_{\eta_{c1}} = 4329(36)$ MeV, we have

 $\Gamma_{D_1 \overline{D}} = 258(133) \text{ MeV}$ $\Gamma_{D^* \overline{D}^*} = 150(118) \text{ MeV}$ $\Gamma_{D^* \overline{D}^*} = 88(18) \text{ MeV}$

 $\Gamma_{\chi_{c1}\eta} = \sin^2 \theta \cdot 44(29) \text{ MeV}$ $\Gamma_{\eta_c\eta'} = \cos^2 \theta \cdot 0.93(77) \text{ MeV}$

- Given the mass above, η_{c1} seems too wide to be identified easily in experiments.
- However, $\Gamma_{\eta_{c1}}$ is very sensitive to $m_{\eta_{c1}}$.
- If $m_{\eta_{c1}} \sim 4.2$ GeV, then $\Gamma_{\eta_{c1}} \sim 100$ MeV. The dominant decay channels are $D^*\overline{D}$ and $D^*\overline{D}^*$.
- Especially for D*D*, the measurement of the polarization of D* and D* will help distinguish a 1⁻⁺ states from 1⁻⁻ states.
- It is suggested that LHCb, Bellell and BESIII to search for η_{c1} in $D^*\overline{D}$ and $D^*\overline{D}^*$ systems !

 η_{c1} production on e^+e^- collider $e^+e^- \rightarrow \psi(nS) \rightarrow \gamma \eta_{c1}$

 η_{c1} production in B meson decays (LHCb and Belle II)

 $B \to \overline{K}X$, $X = X(3872), Z_c(4430), Z_c(3900)$, etc.

 η_{c1} decay modes

Flux-tube model selection rules:

1) Modes of two S-wave mesons are suppressed, SP-modes are favored.

2) Modes of two identical mesons are prohibited.

$$\langle AB|H_I|H\rangle \propto \int d^3\vec{r} \ (\phi_H(\vec{r})\cdots) \int_0^1 d\xi \cos(\xi\pi) \ \phi_A(\xi\vec{r})\phi_B((1-\xi)\vec{r})$$

(P. Page et al., Phys. Rev. D 59 (1999) 034016)

But these rules for η_{c1} decys are not supported by the lattice calculation.

V. Summary

- Lattice QCD makes a rapid progress in the study of heavy flavor spectroscopy.
- Multiquark states are hot topics of lattice QCD studies.
- The existing lattice QCD results relevant to $T_{cc}^+(3875)$ are consistent with each other and support the existence of a shallow $DD^*(I = 0)$ bound state.
- Similar studies are extended to the beauty counterpart T_{bb} of T_{cc} , and suggest the existence of a (deeply) bound $I(J^P) = 0(1^+) BB^*$ state.
- A deeply bound dibaryon $\Omega_{bbb}\Omega_{bbb}$ is predicted.
- There are also developments in the study of charmoniumlike resonance.
- The decay properties of charmoniumlike hybrid η_{c1} are predicted by lattice QCD.
- More interesting works is underway.

Thank you for your attention!