

Recent lattice QCD studies on multiquark states

Ying Chen

Institute of High Energy Physics, Chinese Academy of Sciences, China

8 th XYZ Workshop, Jilin, July 25-30, 2023,

Outline

- **I. Introduction**
- **II. Heavy flavored multiquark states**
- **III. Charmonium(like) states and their decays**
- **IV. Summary and perspectives**

I. Introduction

1. Lattice QCD formalism

• **Path integral quantization on finite Euclidean spacetime lattices**

- **Very similar to a statistical physics system**
- Monte Carlo simulation——importance sampling according to $\mathcal{P}[U] \propto \det M[U] e^{-S_g[U]}$

Gauge ensemble: $\{U_i(\textbf{spacetime}), i = 1, ..., N\}$ \longrightarrow $\langle \widehat{\mathcal{O}}[U, \psi, \overline{\psi}]\rangle =$ $\mathbf{1}$ \boldsymbol{N} $\sum_{i} \mathcal{O}[U_i] + 0$ i $\mathbf{1}$ \boldsymbol{N}

2. New hadron states that has heavy quarks

- Ever since the discovery of $X(3872)$, a large number of charmium (-like) structures have been observed by various experiments (BESIII, BaBar, Belle, CDF, D0, ATLAS, CMS and LHCb).
- All of the XYZ states are above or at least in the vicinity of the open -charm thresholds, and are good candidates for hadron molecules.
- Apart from charmium-like states, LHCb observed several P_c states in $J/\psi p$ final states

 $P_c(4312)$, (4380), $P_c(4440)$, $P_c(4457)$

- In 2021, LHCb observed the first doubly charmed structure $T_{cc}^+(3875)$.
- More states will be coming.
- Their properties are worthy of a investigation in depth.
• Lattice QCD plays an important role, and are
- collaborative efforts along with phenomenological studies in this sector.

3. The methodology for studying hadron-hadron scattering in lattice QCD State-of-art Approach——Lellouch-Lü**scher's formalism**

(see R. Briceno et al., Rev. Mod. Phys. 90 (2018) 025001 for a review).

 $\det \left| F^{-1}\left(\overrightarrow{P},E,L\right)+\mathcal{M}(E)\right| =0$

 $E_n(L)$: Eigen-energies of lattice Hamiltonian.

- **Interpolation field operator set for a given** \mathcal{O}_i : $\overline{q}_1 \Gamma q_2$ $[\overline{q}_1 \Gamma_1 q] [\overline{q} \Gamma_2 q_2]$ $[q_1^T \Gamma_1 q] [\overline{q} \Gamma_2 \overline{q}_2^T]$, ...
- **Correlation function matrix —— Observables**

$$
C_{ij}(t) \&= \left\langle \Omega \middle| \mathcal{O}_i(t) \mathcal{O}_j^+(0) \middle| \Omega \right\rangle
$$
\n
$$
= \sum \left\langle \Omega \middle| \mathcal{O}_i \middle| n \right\rangle \left\langle n \middle| \mathcal{O}_j^+ \middle| \Omega \right\rangle e^{-E_n t}
$$

 \boldsymbol{n} All the energy levels $E_n(L)$ are discretized.

 $F(\vec{P}, E, L)$: Mathematically known function matrix in the channel space (the explicit expression omitted

$$
\mathbb{C} \times \mathbb{R} - \mathbb{C} \times \mathbb{R} = \mathbb{C} \times \mathbb{R} = -\mathcal{L}(P) F(P, L) R^{\dagger}(P)
$$

$M(E)$: Scattering matrix.

Unitarity requires

$$
\mathcal{M}_{ab}^{-1} = (\mathcal{K}^{-1})_{ab} - i \delta_{ab} \frac{2q_a^*}{E_{cm}}
$$

- $\mathcal K$ is a real function of s for real energies above kinematic threshold.
- The pole singularities of $\mathcal{M}(s)$ in the complex s-plane correspond to bound states, virtual states, resonances, etc..

II. Heavy flavored multiquark states

1. Lattice studies of $T_{cc}^{+}(3875)$

LHCb discovered $T_{cc}^{+}(3875)$ in 2021 (LHCb, Nature Phys.18, 751 (2022), Nature Comm.13, 3551 (2022))

 $M_{T_{cc}} - (m_{D^0} + m_{D^{*+}}) = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}$ $\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38}$ keV $\Gamma_{BW}^{U} = 48 \pm 2^{0}_{-14}$ keV Isospin: Only observed in DD^{*+} , therefore $I=0$

The minimum quark configuration: $cc\bar{u}d$

- Spured extensive and intensive phemonenological investigations
- Likely a DD^* hadronic molecule
- A relay race of lattice studies——make the things clearer!

Pole singularity: M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129 (2022) 032002 Dynamics underlying: S. Chen et al., Phys. Lett. B 833, 137391 (2022) Interaction potential: Y. Lyu et al., arXiv:2302.04505 (hep-lat)

7

Either bound or virtual, it affects the cross-section and results in an enhancement near the threshold.

B. Investigation of the isospin-dependent interaction of DD^* scattering

(S. Chen et al., Phys. Lett. B 833, 137391 (2022))

- DD^{*} energies and scattering momenta can be derived precisely
- Single-channel Lüscher's formula applied
- $I = 1 DD^*$ is repulsive, $I = 0 DD^*$ is repulsive (sign of a_0)
- Quark diagrams (after Wick's contraction) contributing to DD^* correlators

$$
C_{DD^*}^{(I)}(t) = D + C_1 + (-)^{I+1}(C_2 + D')
$$

$$
p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + O(p^4)
$$

10^{-1}	10^{-1}	$1 = 1$: repulsive	$I = 0$: attractive			
10^{-2}	$(\epsilon_2 > \epsilon_1 > 0, \ \ \delta E_2 \geq \delta E_1)$	0^{-1}	0^{-1}			
10^{-3}	$(\epsilon_2 > \epsilon_1 > 0, \ \ \delta E_2 \geq \delta E_1)$	0^{-1}	0^{-1}			
10^{-4}	$\frac{1}{\left[\frac{1}{2} - D(G_0 C_0 P)\right]}$	$\Delta E_{DD}^{(I=0)} < 0$,	0^{-1}	0^{-1}	0^{-1}	
10^{-5}	$\frac{1}{\left[\frac{1}{2} - C(G_0 C_0 P)\right]}$	$\Delta E_{DD}^{(I=1)} > 0$,	0^{-1}	0^{-1}	0^{-1}	0^{-1}
0^{-1}	0^{-1}	0^{-1}	0^{-1}	0^{-1}		
0^{-1}	0^{-1}	0^{-1}	0^{-1}			
0^{-1}	0^{-1}	0^{-1}	0^{-1}			
0^{-1}	0^{-1}	0^{-1}	0^{-1}			
0^{-1}	0^{-1}					

Initiatively interprets the underlying physics by analy quark diagrams in lattice QCD calculations

Schematic quark diagrams

B. Investigation of the isospin-dependent interaction of DD^* scattering

(S. Chen et al., Phys. Lett. B 833, 137391 (2022))

- DD^{*} energies and scattering momenta can be derived precisely
- Single-channel Lüscher's formula applied
- $I = 1 DD^*$ is repulsive, $I = 0 DD^*$ is repulsive (sign of a_0)
- Quark diagrams (after Wick's contraction) contributing to DD^* correlators

 $\mathcal{C}_{DD^*}^{(1)}$ $_{D^{*}}^{(I)}(t) = D + C_1 + (-)^{I+1}(C_2 + D')$

- \checkmark *D'* term is negligible.
- ✓ C_2 term is responsible for the energy difference of $DD^*(I=1)$ and $DD^*(I=0)$.
- \checkmark C_2 term can be understood as the exchange of charged vector ρ meson, which provides attractive (repulsive) interaction for $I = 0$ $(I = 1)$
- \checkmark This is in qualitative agreement with phenomenological studies (Dong et al. CTP73 (2021) 125201, Feijoo et al, PRD104(2021)114015)
- Initiatively interprets the underlying physics by analyzing the quark diagrams in lattice QCD calculations

 $\mathbf{1}$ $\mathbf{1}$ $\bm{r_0p^2}+\mathcal{O}\big(\bm{p^4}$ \boldsymbol{p} cot $\boldsymbol{\delta_0}(\boldsymbol{p})=$ $+$ $\boldsymbol{a_0}$ $\overline{\mathbf{2}}$ $I = 1$: repulsive $I = 0$: attractive $\int_a^u D^{*0}$

Schematic quark diagrams

C. Hadron-hadron interaction potential——HALQCD approach (Y. Lyu et al., arXiv:2302.04505 (hep-lat))

- (2+1)-flavor QCD on the 96⁴ lattice with $m_{\pi} = 146.4$ MeV, L=8.1 fm
- Calculate the correlation functions

$$
R(\vec{r},t) = e^{(m_{D^*}+m_D)t} \sum_{\vec{x}} \langle 0|D^*(\vec{x}+\vec{r},t)D(\vec{x},t)\bar{J}(0)|0\rangle = \sum_n A_n \psi_n(\vec{r})e^{-\Delta E_n t} + \cdots
$$

• The function $R(\vec{r}, t)$ satisfies the Shrödinger-type equation

 $1 + 3\delta^2$ $\frac{1}{8\mu} \frac{\partial^2}{\partial t^2} - \partial_t - H_0 + \cdots \Bigg[R(\vec{r}, t) = \int d\vec{r}' \ U(\vec{r}, \vec{r}') R(\vec{r}, t), \qquad H_0 = -1$ ∇^2 $\frac{1}{2\mu}$, $\mu =$ $m_{D^*} m_D$ $m_{D^*} + m_D$, $\delta =$ $m_{D^*} - m_D$ $m_{D^*} + m_D$

• Takes the leading term of derivative expansion of the non-local $U(\vec{r}, \vec{r}')$

$$
U(\vec{r},\vec{r}') \approx V(\vec{r})\delta(\vec{r}-\vec{r}'), \qquad V(r) = R^{-1}(\vec{r},t) \left[\frac{1+3\delta^2}{8\mu}\partial_t^2 - \partial_t - H_0 + \cdots\right]R(\vec{r},t)
$$

- The DD^* potential in the $(I, J^P) = (0,1^+)$ channel is attractive.
- Short range: attractive diquark-antidiquark $(\bar{u}\bar{d} cc)$ Long range: two-pion exchange is favored:

$$
V_{fit}^B(r; m_\pi) = \sum_{i=1,2} a_i e^{(-r/b_i)^2} + a_3 \left(\frac{1}{r} e^{-m_\pi r}\right)^2 \cdots
$$

• Different from phenomenological expectation that ρ -exchange dominates?

Nambu-Bethe-Salpeter

wave function

• Using the derived potential, the S-wave phase shifts δ_0 is obtained by solving the Schrödinger equation of DD^* system, which is put into the ERE

$$
p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0 p^2 + \mathcal{O}(p^4)
$$

Extrapolate to the physical m_{π} ,

$$
V_{fit}^B(r; m_\pi) \rightarrow V_{fit}^B\left(r; m_\pi^{\text{phys}}\right)
$$

one gets

consistent with the large negative scattering length a_0 of a bound state $(k = i\kappa_{\text{pole}})$.

• This result is consistent with the extrapolated a_0 using the existing lattice results.

- Fit to the $D^0D^0\pi^+$ mass spectrum of LHCb experimental data
	- \checkmark The gray band: the theoretical obtained by using $V_{fit}^B(r;m_\pi)$ at $m_\pi=146.4$ MeV
	- The red band: $D^0 D^0 \pi^+$ mass spectrum obtained by chiral extrapolated $V_{fit}^B(r; m_\pi)$ at $m_\pi = 135.0$ MeV
	- ✓ Consistent with the trend of evolution from a near-threshold virtual state into a loosely bound state.

To summarize,

- \checkmark The existing lattice results of $T_{cc}^+(3875)$ relevant studies are consistent with each other;
- \checkmark These results support the existence of a DD^* bound state in the $I = 0$ channel.
- \checkmark The interaction potential study (C) suggests that the two-pion exchange dominates the long range interaction, while study (B) supports the charged- ρ exchange that provides an attractive interaction for $I = 0$ DD^* system near the threshold, as expected by phenomenological studies.

2. Doubly bottomed counterpart of $T_{cc}^+(3875)$

A. BB potential and $\overline{b} \overline{b} u d$ $(I(J^P) = 0(0^+))$ tetraquark bound states using lattice QCD

- Static anti-heavy quarks
- The $r_{\bar{b}\bar{b}}$ dependence of the BB system defines the potential.
- The Schrödinger equation is solved to give the binding energy.
- A bound state exists in the $I(J^P) = O((0,1)^+)$ channel

 $E_B = -90^{+43}_{-36}$ MeV and no binding in the $I(J^P) = 1(1^+)$ channel. (P. Bicudo et al. Phys. Rev. D 93 (2016) 034507)

• A bound state exists in the $I(J^P) = O(1^+)$ DD^* and D^*D^* coupled channel

 $E_B = -59^{+30}_{-38}$ MeV **(P. Bicudo et al. Phys. Rev. D 95 (2017) 034502)**

B. $\bar{b} \bar{b} u d$ $(I(J^P) = 0(0^+))$ tetraquark bound state hinted by negative binding energy

- Chiral extrapolation
- Continuum extrapolation

P. Junnarkar et al., Phys. Rev. D 99, 034507 (2019)

2. Doubly bottomed counterpart of $T_{cc}^{+}(3875)$

- C. $BB^* B^*B^*$ coupled channel potential and $\overline{b} \overline{b} u d$ $(I(J^P) = 0(1^+))$ HALQCD formalism (S. Aoki and T. Aoki, PoS LATTICE2022, 049 (2023))
- Calculate the NBS wave function to derive the potential of $BB^* - B^*B^*$ coupled channel potential.
- Solve the Lippmann-Schwinger equation to get the scattering phase of the **BB^{*}** single channel.

• The linear chiral extrapolation of the binding energy in m_π^2 gives

 $E_B^{\text{single}} = -154.8 \pm 17.2 \text{ MeV},$ $E_{\rm B}^{\rm couple}$ $= -83.0 \pm 10.2 \text{ MeV}$

• Corroborate the previous lattice results.

2. Doubly bottomed counterpart of $T_{cc}^+(3875)$

D. $\overline{b} \overline{b} q q'$ (1⁺) systems explored in the Lellouch-Lüscher formalism

• For the $\overline{b} \overline{b} u d (0(1^+))$ system, phase shifts $\delta_0(k)$ are calculated at five m_{π} values.

All the cases give negative E_R , which are extrapolated to the value at the physical m_{π} :

 $E_R = -128 \pm 24 \pm 10$ MeV

(L. Leskovec et al. Phys. Rev. D 100 (2019) 014503)

• Clear evidence for a $\overline{b} \overline{b} u s$ (1⁺) tetraquark:

 $E_R = -86 \pm 22 \pm 10$ MeV but strong discrepancies, even on the qualitive level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

2. Doubly bottomed counterpart of $T_{cc}^{+}(3875)$

D. $\overline{b} \overline{b} q q'$ (1⁺) systems explored in the Lellouche-Luescher formalism

• For the $\overline{b} \overline{b} u d$ $(0(1^{+}))$ system, phase shifts $\delta_{0}(k)$ are calculated at five m_{π} values.

To summarize:

- t to summanze.
 $\frac{1}{2}$. All the evicting lettice OCD $\frac{1}{2}$ \checkmark All the existing lattice QCD studies indicate the existence of $T_{bb} (0(1 +$
- \checkmark However, the predicted banding energy E_B varys in the range $(-40) (-130)$ MeV .
- $\epsilon \curvearrowleft \text{ The absolute value } |E_B|$ is quite larger than that of $T_{cc}^+(3875)$.

$E_B = -86 \pm 22 \pm 10$ MeV

but strong discrepancies, even on the qualitive

level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

Blue: LQCD, Green: Pheno.

3. P_c states and $\Sigma_c D(D^*)$ scatterings (H. Xing et al., arXiv:2210.08555)

- LHCb observed several P_c states in $J/\psi p$ final state $P_c(4312)$, $P_c(4380)$, $P_c(4440)$, $P_c(4457)$ which must have the minimal quark configuration $uudc\bar{c}$.
- The $J^P=\frac{1}{2}$ 2 $\overline{\Sigma_c \overline{D}}$ and $\Sigma_c \overline{D}^*$ scatterings are investigated via the Leuscher's method:

• Comment: The $J/\psi\, p - \Sigma_c D^{(*)}$ coupled channel effects have not been considered. They can be important, since P_c states are observed in the $J/\psi p$ invariant mass spectrum.

3. Dibaryon $\Omega_{hhh} \Omega_{hhh}$ from lattice QCD (N. Mathur et al., Phys. Rev. Lett. 130 (2023) 111901)

III. Charmonium(like) states and their decays

1. $J^{PC} = (0,2)^{++}$ charmoniumlike resonances in coupled $D\overline{D}$ and $D_s\overline{D}_s$ scattering

(S. Prelovsek et al., JHEP 06 (2021) 035)

- Relevant to X(3860), $X(3930)$ and $X(3915)$, which are near $D\overline{D}$ and $D_{s}\overline{D}_{s}$ thresholds.
- The operator set includes $\bar{c}c$ operators and $(D\overline{D}, D_{\overline{s}}\overline{D}_{\overline{s}})$ operators with different relative momenta.
- Lellouch-Luescher formalism is implemented.
	- \checkmark A 0⁺⁺ shallow bound state ($E_B \sim -4$ MeV) is observed right below the $D\overline{D}$ threshold.
	- \checkmark A narrow resonance appears just below the $D_{\rm s} \overline{D}_{\rm s}$ threshold, which may have connections with $\chi_{c0}(3930)$ and $\chi(3915)$
	- \checkmark Consistent with the trend of evolution from a near-threshold virtual state into a loosely bound state.
	- \checkmark The single channel analysis of $L = 2 DD$ scattering find a 2⁺⁺ resonance, whose properties are consistent with $\chi_{c2}(3930)$.

A 0^{++} shallow bound state in s-wave $D\overline{D}$ scattering

 $A 0^{++}$ shallow bound state in s-wave $D_s\overline{D}_s$ scattering

2. Decays of charmoniumlike 1^{−+} hybrid $\boldsymbol{\eta}_{c1}$ **(** C. Shi et al., arXiv: 2306.12884 (hep-lat))

- There exist candidates for light 1^{-+} hybrids, such as $\pi_1(1600)$ and $\eta_1(1855)$.
- The charmonium like counterpart η_{c1} of η_1 is expected. Lattice QCD predicts $m_{\eta_{c1}} \sim 4.2 4.4$ GeV.
- Two body decay modes of η_{c1} : $D_1\overline{D}$, $D^*\overline{D}$, $D^*\overline{D}^*$, $\chi_{c1}\eta(\eta'), \eta_c\eta(\eta'), J/\psi\omega(\phi)$
- The first lattice QCD calculation of the partial widths of these decays is presented.

Lattice methodology (C. McNeile & C. Michael, Phys. Lett. B 556 (2003) 177)

For the two-body decay $\eta_{c1} \to AB$, in the space spanned by $|\eta_{c1}\rangle$ and $|AB\rangle$ $(m_{\eta_{c1}} > E_{AB})$

$$
|\eta_{c1}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} |AB\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \hat{H} = \begin{pmatrix} m_{\eta_{c1}} & x \\ x & E_{AB} \end{pmatrix} \qquad \hat{T}(a) = e^{-a\hat{H}} = e^{-a\overline{E}} \begin{pmatrix} e^{-a\Delta/2} & ax \\ ax & e^{a\Delta/2} \end{pmatrix}
$$

The transition takes place at any t' between 0 and t :

$$
\frac{t}{t} = \frac{m_{\eta_{c1}} + E_{AB}}{2}, \qquad \Delta = m_{\eta_{c1}} - E_{AB}
$$

$$
\frac{t}{t} = \frac{0}{t} \qquad \frac{t}{t} =
$$

Amplitudes for $\eta_{c1} \rightarrow AB$ from the Lagrangian

$$
\frac{\mathcal{C}_{\eta_{c1},AB}(t)}{\sqrt{\mathcal{C}_{\eta_{c1}}(t)\mathcal{C}_A(t)\mathcal{C}_B(t)}} \rightarrow -(ax) t\left(1+\frac{1}{24}(a\Delta t)^2\right)
$$

 $x_{AP}^{\lambda'\lambda} = g_{AP} m_{\eta_{c1}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \vec{\epsilon}_{\lambda'}^{\;\ast}(\vec{k}),$ $x_{PP}^{\lambda}=\!2g_{PP}\vec{\epsilon_{\lambda}}(\vec{0})\cdot\vec{k},$ $x_{D^*\bar{D}}^{\lambda'\lambda} = g_{D^*\bar{D}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot (\vec{\epsilon}_{\lambda'}^{\;\ast}(\vec{k}) \times \vec{k}),$ $\left|x_{D^*\bar{D}^*}^{\lambda'\lambda''\lambda}\!=\!2g_{D^*\bar{D}^*}\vec{\epsilon}_\lambda(\vec{0})\cdot\left(\vec{k}\times\left[\vec{\epsilon}_{\lambda'}^*(\vec{k})\times\vec{\epsilon}_{\lambda''}^*(-\vec{k})\right]\right)\right|$

Efffective couplings g_{AB} are derived as follows:

The $m_{\eta_{c1}}$ -dependence of partial decay widths

$$
|D^*\overline{D}^*\rangle_{(C=+)}^{(I=0)} = \frac{1}{\sqrt{2}} (|D^{*+}D^{*-}\rangle + |D^{0*}\overline{D}^{0*}\rangle)_{(L=1)}^{(S=1)}
$$

$$
L + S = \text{even}
$$

• For $m_{\eta_{c1}} = 4329(36)$ MeV, we have

 $\Gamma_{D_1\overline{D}} = 258(133)$ MeV $\Gamma_{D^*\overline{D}^*} = 150(118)$ MeV $\Gamma_{D^*\overline{D}^*} = 88(18)$ MeV

 $\Gamma_{\chi_{c1}\eta} = \sin^2\theta \cdot 44(29)$ MeV $\Gamma_{\eta_c \eta'} = \cos^2 \theta \cdot 0.93(77)$ MeV

Given the mass above, η_{c1} seems too wide to be identified easily in experiments.

• However,
$$
\Gamma_{\eta_{c1}}
$$
 is very sensitive to $m_{\eta_{c1}}$.

- If $m_{\eta_{c1}} \sim 4.2$ GeV, then $\Gamma_{\eta_{c1}} \sim 100$ MeV. The dominant decay channels are $D^*\overline{D}$ and $D^*\overline{D}^*$.
- Especially for $D^*\overline{D}^*$, the measurement of the polarization of D^* and \overline{D}^* will help distinguish a 1^{-+} states from 1^{--} states.
- It is suggested that LHCb, BelleII and BESIII to search for η_{c1} in $D^*\overline{D}$ and $D^*\overline{D}^*$ systems !

• η_{c1} production on e^+e^- collider e^-

 $^+e^- \rightarrow \psi(nS) \rightarrow \gamma \eta_{c1}$ (ψ (4415) etc.)

 η_{c1} production in B meson decays (LHCb and Belle II)

 $B \to \overline{K}X$, $X = X(3872)$, $Z_c(4430)$, $Z_c(3900)$, etc.

 $\overline{\mathsf{B}}$ $\overline{\mathsf{K}}$

 η_{c1} decay modes

Flux-tube model selection rules:

1) Modes of two S-wave mesons are suppressed, SP-modes are favored.

2) Modes of two identical mesons are prohibited.

$$
\langle AB|H_I|H \rangle \propto \int d^3 \vec{r} \, (\phi_H(\vec{r}) \cdots) \int_0^1 d\xi \cos(\xi \pi) \, \phi_A(\xi \vec{r}) \phi_B \big((1 - \xi) \vec{r} \big)
$$

(P. Page et al., Phys. Rev. D 59 (1999) 034016)

But these rules for η_{c1} decys are not supported by the lattice calculation.

V. Summary

- Lattice QCD makes a rapid progress in the study of heavy flavor spectroscopy.
- Multiquark states are hot topics of lattice QCD studies.
- The existing lattice QCD results relevant to $T_{cc}^{+}(3875)$ are consistent with each other and support the existence of a shallow $DD^*(I=0)$ bound state.
- Similar studies are extended to the beauty counterpart T_{bb} of T_{cc} , and suggest the existence of a (deeply) bound $I(J^P) = O(1^+) BB^*$ state.
- A deeply bound dibaryon Ω_{hhh} is predicted.
- There are also developments in the study of charmoniumlike resonance.
- The decay properties of charmoniumlike hybrid η_{c1} are predicted by lattice QCD.
- More interesting works is underway.

Thank you for your attention!