

The hidden-charm pentaquark states in a mass splitting model

报告人:满自龙 山东大学

Based on

Shi-Yuan Li, Yan-Rui Liu, Zi-Long Man, Zong-Guo Si, and Jing Wu, arXiv:2307.00539

2023/7/27

2. Formalism

3. Results for hidden-charm pentaquark states

4. Summary

Hadron properties difficult to derive from QCD

Methods: Lattice QCD、Quark Model、Effective field theory et.al.

R.L.Workman, et.al PTEP, 083C01(2022)

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q\bar{q})$ similarly gives just 1 and 8. AN SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

CERN LIBRARIES, GENEVA

Δ

```
G.Zweig *)
CERN - Geneva
```

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

History of pentaquark states

Bing-Song Zou, Sci.Bull66, 1258(2021)

• $\overline{K}N$ molecule state $udsq\overline{q}$

Dalitz and Tuan, PRL2, 425-428(1959)

one quark in an orbital p-wave excitation. After about 50 years'

fighting on whether it is a (*uds*)-system or (*udsqq*)-system (with q denoting light quark) of the \overline{KN} type, until 2010, the Particle Data

Group still claimed that "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ – true 3-quark state or mere $\bar{K}N$ threshold effect? –

unambiguously in favor of the first interpretation". A similar situ-

- ♦ **1961** $\Lambda(1405) \rightarrow \Sigma \pi$
- ◆ 1964 Quark Model → an excited state *uds*

N^{*}(1535)

 $\theta^+(1540)$

- $\overline{K}\Sigma \overline{K}\Lambda$ quasi-bound state $qqqs\overline{s}$
- Kaiser, et.al, PLB362, 23-28(1995) Bo-Chao Liu, et.al PRL96, 042002(2006)

♦ an excited state qqq

Yan-Rui Liu, et.al PRC69, 035205(2004)

• $\overline{D}^{(*)}\Sigma_c$ and $\overline{D}^{(*)}\Xi_c$ molecule states $\xrightarrow{\text{decay}} J/\psi p$ and $J/\psi \Lambda$ Jia-Jun Wu,et.al PRL105, 232001(2010) with mass above 4 GeV and width smaller than 100 MeV

R.Aaij et.al PRL115, 072001(2015)

R.Aaij et.al PRL112, 222001(2019)

Molecular states are loosely bound states composed of meson-baryons by the longrange color-singlet meson exchange.

Compact pentaquark states are bound states of five quarks by the short-range one-gluon exchange

R.Aaij et.al PRL115, 072001(2015) R.Aaij et.al PRL112, 222001(2019) R.Aaij et.al Sci.Bull66, 1278 (2021) R.Aaij et.al PRL 112, 063001(2022) LHCb Collaboration arXiv:2210.10346

Guo,et.al Rev Mod Phys90, 015004(2018) Liu,et.al Prog.Part.Nucl.Phys107, 237-320(2019) Chen,et.al Rept.Prog.Phys86, 026201(2023) Meng,et.al Phys Rept 1019, 1-149(2023)

• Compact pentaquark states in chromomagnetic interaction (CMI) model.

Mass spectra are estimated by a reference hadron-hadron channel Jing Wu,et.al PRD95, 034002(2017) Mass spectra and rearrangement decay properties of $(uud_{8c}(c\bar{c})_{8c})_{8c}$ and $(uus_{8c})_{8c}(c\bar{c})_{8c}$ are studied

Jian-Bo Cheng, et.al PRD100, 054002(2019)

 $Pc(4457), Pc(4440), Pc(4312) \implies J^P = 3/2^-, 1/2^-, 3/2^-$

1.Hadron-hadron threshold as reference scale 2. $(qqq)_{1c}(c\overline{c})_{1c}$ component not considered

Formalism Mass splitting model

$$H = \sum_{i} m_{i} + \sum_{i} \frac{\vec{p}_{i}^{2}}{2m_{i}} + \sum_{i < j} \frac{\vec{\lambda}_{i} \vec{\lambda}_{j}}{4} \left(\frac{\alpha_{s}}{r_{ij}} - \frac{3}{4} br_{ij} - \frac{8\pi\alpha_{s}}{3m_{i}m_{j}} S_{i} \cdot S_{j} e^{-\sigma^{2}r^{2}} \frac{\sigma^{3}}{\pi^{3/2}} \right)$$
$$H = \sum_{i} m_{i} - \sum_{i} C_{ij} \vec{\lambda}_{i} \cdot \vec{\lambda}_{j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} = \sum_{i} m_{i} + H_{CMI}$$

 m_i is effctive quark mass, which contians the kinetic energy, color confinement , and so on. H_{CMI} is color-magnetic interaction

$$M = \sum_{i} m_{i} + \langle H_{CMI} \rangle$$
$$M = \left[M_{ref} - \langle H_{CMI} \rangle_{ref} \right] + \langle H_{CMI} \rangle$$

Using hadron-hadron threshold as a reference

Choosing a compact state as a reference Tetraquarks X(4140) : $QQ\overline{Q}\overline{Q}, QQ\overline{q}\overline{q}, Qq\overline{q}\overline{q}...$ **Petanquarks** Pc(4312)

$$M = \left[M_{Pc(4312)} - \left\langle H_{CMI} \right\rangle_{Pc(4312)} \right] + \sum_{ij} \Delta_{ij} + \left\langle H_{CMI} \right\rangle$$

where $\Delta_{ij} = m_i - m_j$ denotes the effective quark mass gap between i quark and j quark

$$\begin{split} M_{nnnc\bar{c}} &= (M_{P_c(4312)^+} - \langle H_{CMI} \rangle_{P_c(4312)^+}) + \langle H_{CMI} \rangle_{nnnc\bar{c}}, \\ M_{nnsc\bar{c}} &= (M_{P_c(4312)^+} - \langle H_{CMI} \rangle_{P_c(4312)^+}) + \Delta_{sn} + \langle H_{CMI} \rangle_{nnsc\bar{c}}, \\ M_{ssnc\bar{c}} &= (M_{P_c(4312)^+} - \langle H_{CMI} \rangle_{P_c(4312)^+}) + 2\Delta_{sn} + \langle H_{CMI} \rangle_{ssnc\bar{c}}, \\ M_{sssc\bar{c}} &= (M_{P_c(4312)^+} - \langle H_{CMI} \rangle_{P_c(4312)^+}) + 3\Delta_{sn} + \langle H_{CMI} \rangle_{sssc\bar{c}}, \end{split}$$

(n=u,d)

Quark mass differences (units: MeV) determined with various hadrons. The values from the extracted effective quark masses are $m_s - m_n = 178.6$ MeV and $m_b - m_c = 3328.2$ MeV.

Hadron	Hadron	(m_s-m_n)	Hadron	Hadron	$(m_b - m_c)$
D_s	D	103.5	B	D	3340.9
B_s	В	90.8	B_s	D_s	3328.2
Σ	N	187.1	η_b	η_c	3188.4
Λ	N	177.4	Λ_b	Λ_c	3333.1
Ω_c	Σ_c	158.8	Σ_b	Σ_c	3328.5
Ω_b	Σ_b	147.9	Ξ_b	Ξ_c	3326.2
Ξ_c	Λ_c	133.4	Ω_b	Ω_c	3315.7
Ξ_c	Σ_c	119.5			
Ξ_b	Λ_b	126.9			
Ξ_b	Σ_b	117.6			

Formalism| Wave function

$(I = \frac{3}{2}, Y = 1, J = \frac{5}{2})$	$[(F_S)^S_A(c\bar{c})^1_1]^{\frac{5}{2}}_1$	3 3 3
$(I = \frac{3}{2}, Y = 1, J = \frac{3}{2})$	$\frac{1}{\sqrt{2}} \{ [(F_S)_{MA}^{MS} (c\bar{c})_8^1]_1^{\frac{5}{2}} - [(F_S)_{MS}^{MA} (c\bar{c})_8^1]_1^{\frac{5}{2}} \} \} = 0$	$(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}}$; $[(F_{S})_{A}^{S}(c\bar{c})_{1}^{0}]_{1}^{\frac{1}{2}}$; $[(F_{S})_{A}^{S}(c\bar{c})_{1}^{1}]_{1}^{\frac{1}{2}}$
$(I = \frac{3}{2}, Y = 1, J = \frac{1}{2})$	$\frac{1}{\sqrt{2}} \{ [(F_S)_{MA}^{MS} (c\bar{c})_8^0]_1^{\frac{1}{2}} - [(F_S)_{MS}^{MA} (c\bar{c})_8^0]_1^{\frac{1}{2}} - [(F_S)_{MS}^{MA} (c\bar{c})_8^0]_1^{\frac{1}{2}} \} \}$	$(c\bar{c})_{8}^{0}]_{1}^{\frac{1}{2}}\}; \ \frac{1}{\sqrt{2}}\{[(F_{S})_{MA}^{MS}(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}} - [(F_{S})_{MS}^{MA}(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}}\};$
<u>.</u>	$[(F_S)^S_A (c\bar{c})^1_1]^{rac{1}{2}}_1$	
$(I = \frac{1}{2}, Y = 1, J = \frac{5}{2})$	$\frac{1}{\sqrt{2}} \{ [(F_{MS})_{MA}^S (c\bar{c})_8^1]^{\frac{5}{2}} - [(F_{MA})_M^S (c\bar{c})_8^1]^{\frac{5}{2}} - $	$_{IS}(c\bar{c})^{1}_{8}]^{\frac{5}{2}}\}$
$(I = \frac{1}{2}, Y = 1, J = \frac{3}{2})$	$\frac{1}{2} \{ [(F_{MS})_{MS}^{MA} (c\bar{c})_8^1]^{\frac{3}{2}} + [(F_{MA})_M^M]^{\frac{3}{2}} \} $	$[F_{S}(c\bar{c})_{8}^{1}]^{\frac{3}{2}} + [(F_{MS})_{MA}^{MS}(c\bar{c})_{8}^{1}]^{\frac{3}{2}} - [(F_{MA})_{MA}^{MA}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}]^{\frac{3}{2}}$
	$\frac{1}{\sqrt{2}} \{ [(F_{MS})^S_{MA} (c\bar{c})^0_8]^{\frac{3}{2}} - [(F_{MA})^S_M (c\bar{c})^0_8]^{\frac{3}{2}} - [(F_{MA})^S_M (c\bar{c})^0_M (c$	$[I_{AS}(car{c})^0_8]^{rac{3}{2}}\}$
	$\frac{1}{\sqrt{2}} \{ [(F_{MS})^S_{MA} (c\bar{c})^1_8]^{\frac{3}{2}} - [(F_{MA})^S_M (c\bar{c})^1_8]^{\frac{3}{2}} \} \}$	$[I_{AS}(car{c})_8^1]^{3\over 2}\}$
	$\frac{1}{\sqrt{2}} \{ [(F_{MS})_A^{MS} (c\bar{c})_1^1]^{\frac{3}{2}} + [(F_{MA})_A^N (c\bar{c})_1^1]^{\frac{3}{2}} + $	$^{IA}(car{c})_{1}^{1}]^{rac{3}{2}}\}$
$(I = 0, Y = 0, J = \frac{5}{2})$	$[(D_A s)^S_{MS} (c\bar{c})^1_8]^{\frac{5}{2}}_{\frac{1}{2}}$	a a a a
$(I = 0, Y = 0, J = \frac{3}{2})$	$[(D_A s)^{MS}_{MS}(c\bar{c})^1_8]^{\frac{7}{2}}_1; \ [(D_A s)^S_{MS}(c\bar{c})^1_8]^{\frac{7}{2}}_1; \ [(D_A s)^S_{MS}(cc$	$[D_{3}]_{1}^{\frac{1}{2}}; \ [(D_{A}s)_{MS}^{S}(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}}; \ [(D_{A}s)_{MA}^{MA}(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}}; \ [(D_{A}s)_{A}^{MA}(c\bar{c})_{1}^{1}]_{1}^{\frac{1}{2}}$
$(I=0,Y=0,J=\tfrac{1}{2})$	$[(D_A s)^{MS}_{MS}(c\bar{c})^0_8]^{\frac{1}{2}}_{1}; \ [(D_A s)^{MS}_{MS}(c\bar{c})]^{\frac{1}{2}}_{1};$	$[\frac{1}{3}]_{1_{1}}^{\frac{1}{2}}; \ [(D_{A}s)_{MS}^{S}(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}}; \ [(D_{A}s)_{MA}^{MA}(c\bar{c})_{8}^{0}]_{1}^{\frac{1}{2}} \ [(D_{A}s)_{MA}^{MA}(c\bar{c})_{8}^{1}]_{1}^{\frac{1}{2}}$
-	$[(D_A s)^{MA}_A (c\bar{c})^0_1]^{\frac{1}{2}}_1; [(D_A s)^{MA}_A (c\bar{c})^0_1]^{\frac{1}{2}}_1;$	1] ¹ / ₂ 1] ₁
Flavor wave fu	nction	
$F_{S} = nnn$	$D_s = \frac{1}{\sqrt{2}} (ud + du)$	$[(qqq_{flavor})_{color}^{spin}(c\overline{c})_{color}^{spin}]_{color}^{spin}(q=u,d,s)$
$F_{MS} = \frac{1}{\sqrt{2}} (ud + du)u$	$D_{4} = \frac{1}{\sqrt{2}} (ud - du)$	$[(F_S)^S_A(c\bar{c})^1_1]^{5/2}_1 = (uuu)c\bar{c} \uparrow \uparrow \uparrow \uparrow \uparrow \phi_A$
$F_{MA} = \frac{\frac{\sqrt{2}}{1}}{\sqrt{2}}(ud - du)u$	[^] √2 `	$\left\langle H_{CMI} \right\rangle_{J=\frac{5}{2}} = 8C_{12} + \frac{16}{3}C_{45}$

A simple decay scheme

We assume that the Hamiltonian is a constant $H = \alpha$ and the sum of two-body rearrangement

decay widths is equal to the measured width $\Gamma_{sum} = \Gamma_{total}$

$$(q_1q_2q_3)(c\bar{c}) \to (q_1q_2c)_{1c} + (q_3\bar{c})_{1c}, (q_1q_2q_3)(c\bar{c}) \to (q_1cq_3)_{1c} + (q_2\bar{c})_{1c}, (q_1q_2q_3)(c\bar{c}) \to (cq_2q_3)_{1c} + (q_1\bar{c})_{1c}, (q_1q_2q_3)(c\bar{c}) \to (q_1q_2q_3)_{1c} + (c\bar{c})_{1c}.$$

$$\mathcal{M}^2 = \alpha^2 |\sum_i (x_i y_i)|^2$$
$$\Gamma = |\mathcal{M}|^2 \frac{|\vec{p}_1|}{8\pi M_{pentaquark}^2}$$

\overline{J}			(I,Y) =	$=(\frac{3}{2},1)$		
5		$\Sigma_c^* D^*$	$\Delta J/\psi$			
2	$[(F_s)_1^{3/2}(c\bar{c})_1^1]_1^{5/2}$	$\frac{1}{3}$	1			
		$\Sigma_c^* D^*$	$\Sigma_c^* D$	$\Sigma_c D^*$	$\Delta J/\psi$	$\Delta \eta_c$
$\frac{3}{2}$	Ψ_1	$\frac{2\sqrt{5}}{9}$	$-\frac{2}{3\sqrt{3}}$	$\frac{2}{9}$	0	0
2	$[(F_s)_1^{\frac{3}{2}}(c\bar{c})_1^0]_1^{\frac{3}{2}}$	$\frac{\sqrt{5}}{6\sqrt{3}}$	$\frac{1}{6}$	$-\frac{1}{3\sqrt{3}}$	1	0
	$[(F_s)_1^{\frac{3}{2}}(c\bar{c})_1^1]_1^{\frac{3}{2}}$	$\frac{1}{18}$	$\frac{\sqrt{5}}{6\sqrt{3}}$	$\frac{\sqrt{5}}{9}$	0	1
		$\Sigma_c^* D^*$	$\Sigma_c D^*$	$\Sigma_c D$	$\Delta J/\psi$	
$\frac{1}{2}$	Ψ_2	$\frac{2\sqrt{2}}{3\sqrt{3}}$	$-\frac{1}{3\sqrt{3}}$	$\frac{1}{3}$	0	
2	Ψ_3	$\frac{2\sqrt{2}}{9}$	$\frac{5}{9}$	$-\frac{1}{3\sqrt{3}}$	0	
	$[(F_s)_1^{\frac{3}{2}}(c\bar{c})_1^1]_1^{\frac{1}{2}}$	$-\frac{1}{9}$	$\frac{\sqrt{2}}{9}$	$\frac{\sqrt{2}}{3\sqrt{3}}$	1	

Results for $nnnc\overline{c}$

We assum that the $P_c(4312)^+$ is the second lowest $I(J^P) = 1/2(3/2^-)nnnc\overline{c}$ compact pentaquark and treat it as the reference state in studying other pentaquarks

Eigenvalue (MeV)	Eigenvector	Ratio
78.0	$\{0.264, -0.270, -0.224, 0.898\}$	0.980:0.020
26.8	$\{0.489, -0.324, 0.809, -0.040\}$	0.998:0.002
-70.7	$\{-0.686, 0.259, 0.539, 0.414\}$	0.829:0.171
-133.3	$\{0.264, -0.270, -0.224, 0.898\}$	$0.193 {:} 0.807$

Rearrangement decay widths for the $I = \frac{1}{2}, Y = 1 \ nnnc\bar{c}$ states in units of MeV.

I ($(J^P) = \frac{1}{2}(\frac{5}{2})$	$\Sigma_c^* \bar{D}^*$							Γ_{sum}
	4479.2	(11.1,-)							0.0
[($(J^P) = \frac{1}{2}(\frac{3}{2})$	$\Sigma_c^* \bar{D^*}$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D^*}$	$\Lambda_c \bar{D^*}$	NJ/ψ			Γ_{sum}
	4460.6	(32.7,-)	(3.0, 1.6)	(4.6, -)	(3.5, 2.8)	(2.0, 0.7)			5.0
	4409.3	(1.3, -)	(1.3, 0.4)	(36.0, -)	(5.8, 3.8)	(0.2, 0.1)			4.2
	4311.9	(0.0,-)	(20.2, -)	(0.9, -)	(17.7, 4.6)	(17.1, 5.2)			9.8
	4249.3	(1.2,-)	(14.5, -)	(1.1,-)	(0.8, -)	(80.7, 22.0)			22.0
[$(J^P) = \frac{1}{2}(\frac{1}{2})$	$\Sigma_c^* \bar{D^*}$	$\Sigma_c \bar{D^*}$	$\Sigma_c \bar{D}$	$\Lambda_c \bar{D^*}$	$\Lambda_c ar{D}$	NJ/ψ	$N\eta_c$	Γ_{sum}
ſ	4420.7	(18.8, -)	(9.1, -)	(1.1, 0.6)	(13.3, 9.1)	(0.6, 0.6)	(4.4, 1.5)	(0.6, 0.2)	12.1
L	4323.9	(7.9,-)	(20.5, -)	(0.8, 0.1)	(0.7, 0.2)	(8.2, 6.8)	(16.9, 5.2)	(2.3, 0.9)	13.2
	4291.2	(2.3,-)	(0.9,-)	(15.4, -)	(12.1, -)	(2.6, 2.0)	(19.4, 5.7)	(14.0, 5.0)	12.7
	4227.2	(0.1,-)	(0.2, -)	(10.5, -)	(1.0,-)	(12.3, 6.9)	(59.3, 15.4)	(1.7, 0.6)	22.9
	4118.9	(0.5,-)	(0.9, -)	(11.2,-)	(0.7, -)	(4.1,-)	(0.0, 0.0)	(81.4, 22.5)	22.5

Results for $nnnc\overline{c}$

10

5

-5

1

2

3

Vidth ratio

Ratios between decay widths of different pentaquarks

 $P_{c}(4457)^{+}, P_{c}(4440)^{+}, P_{c}(4337)^{+}$ can be regarded as the J=3/2, J=1/2, and J=1/2 pentaquark states, respectively.

For
$$P_c(4457)^+$$
 $\Gamma(\sum_c^* \overline{D}): \Gamma(\Lambda_c \overline{D}^*): \overline{\Gamma(NJ/\Psi)} = 2.3:4.0:1.0$ For $P_c(4440)^+$ $\Gamma(\Lambda_c \overline{D}^*): \Gamma(\sum_c \overline{D}): \Gamma(\Lambda_c \overline{D}): \overline{\Gamma(NJ/\Psi)}: \Gamma(N\eta_c) = 45.5:3.0:3.0:7.5:1.0$ PredictionFor $P_c(4312)^+$ $\overline{\Gamma(NJ/\Psi)}: \Gamma(\Lambda_c \overline{D}^*) = 1.1$ $\Gamma(\Lambda_c \overline{D}): \overline{\Gamma(NJ/\Psi)} = 1.3$ Prediction

Results for $nnnc\overline{c}$

4660 4581 4579 4557 4549 $(\Sigma_c^*\overline{D}^*)$ Mass(MeV) 4473 $(\Sigma_c \overline{D}^*)$ 4425 $(\Sigma_c^*\overline{D})$ $(\Delta J/\psi)$ $(\Delta \eta_c)$ $\frac{1}{2}^{-}$ $\frac{3}{2}$ $\frac{5}{2}^{-}$ $I = \frac{3}{2} nnnc\bar{c}$ states

Rearran	gement deca	ay widths for	the $I = \frac{3}{2}$,	Y = 1 nnnc	$c\bar{c}$ states in u	nits of M
$I(J^P) = \frac{3}{2}(\frac{5}{2})$	$\Sigma_c^* \bar{D}^*$	$\Delta J/\psi$				Γ_{sum}
4557.2	(11.1, 3.6)	(100.0, 26.9)				30.4
$I(J^P) = \frac{3}{2}(\frac{3}{2})^-$	$\Sigma_c^* \bar{D^*}$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D^*}$	$\Delta J/\psi$	$\Delta\eta_c$	Γ_{sum}
4581.0	(24.0, 10.2)	(2.2, 1.8)	(6.4, 4.1)	(8.2, 2.3)	(27.4, 9.3)	27.6
4548.6	(5.6, 1.5)	(10.8, 8.0)	(2.2, 1.2)	(5.0, 1.3)	(72.4, 23.7)	35.8
4425.2	(0.1,-)	(9.2, 3.5)	(6.2, -)	(86.8, 15.8)	(0.2, 0.0)	19.4
$I(J^P) = \frac{3}{2}(\frac{1}{2})$	$\Sigma_c^* \bar{D^*}$	$\Sigma_c \bar{D^*}$	$\Sigma_c \bar{D}$	$\Delta J/\psi$		Γ_{sum}
4660.1	(37.2, 24.3)	(0.5, 0.4)	(0.1, 0.1)	(20.1, 6.3)		31.0
4579.3	(1.0, 0.4)	(28.8, 18.1)	(0.0, 0.0)	(43.7, 12.2)		30.8
4473.3	(2.5,-)	(7.8, 1.5)	(22.2, 16.3)	(36.2, 7.9)		25.8

Compared with the $I = 1/2nnnc\overline{c}$ pentaquarks, the masses and rearrangement decay widths of I = 3/2 states are overall larger.

Results for $nnsc\overline{c}$

I=0 case, five pentaquarks have masses around 4338 MeV and two pentaquarks have masses close to 4459 MeV.

Just from the spectrum, two J=3/2 pentaquark states are good candidates for the

 $P_{cs}(4338)^{0}$ and $P_{cs}(4459)^{0}$, but there are also other possibilities.

 $\Gamma(P_{cs}(4459)^{0}):\Gamma(P_{cs}(4338)^{0})=2.5_{-1.4}^{+1.6}$

If we assign the $P_{cs}(4459)^0$, $P_{cs}(4338)^0$ to be J=3/2 pentaquark states $\widetilde{P}_{cs}(4478)$, $\widetilde{P}_{cs}(4338)$, respectively, $\Gamma(\widetilde{P}_{cs}(4478)^0)$: $\Gamma(\widetilde{P}_{cs}(4338)^0) \sim 0.12$

which is contradicted with the experimantal value.

Other possible assignments:

$$\begin{split} &\Gamma(\tilde{P}_{cs}(4478)^0):\Gamma(\tilde{P}_{cs}(4371)^0) \ = \ 0.15, \\ &\Gamma(\tilde{P}_{cs}(4478)^0):\Gamma(\tilde{P}_{cs}(4328)^0) \ = \ 0.56, \\ &\Gamma(\tilde{P}_{cs}(4478)^0):\Gamma(\tilde{P}_{cs}(4318)^0) \ = \ 2.57, \\ &\Gamma(\tilde{P}_{cs}(4478)^0):\Gamma(\tilde{P}_{cs}(4304)^0) \ = \ 0.17, \\ &\Gamma(\tilde{P}_{cs}(4497)^0):\Gamma(\tilde{P}_{cs}(4371)^0) \ = \ 0.72, \\ &\Gamma(\tilde{P}_{cs}(4497)^0):\Gamma(\tilde{P}_{cs}(4338)^0) \ = \ 0.61, \\ &\Gamma(\tilde{P}_{cs}(4497)^0):\Gamma(\tilde{P}_{cs}(4328)^0) \ = \ 2.78, \\ &\Gamma(\tilde{P}_{cs}(4497)^0):\Gamma(\tilde{P}_{cs}(4318)^0) \ = \ 12.71, \\ &\Gamma(\tilde{P}_{cs}(4497)^0):\Gamma(\tilde{P}_{cs}(4304)^0) \ = \ 0.83. \end{split}$$

Theoretical widths are much

smaller than the measured results.

 $P_{cs}(4338)^0$ and $P_{cs}(4459)^0$ can be regarded as the $J^P = 1/2^-$ pentaquark states, respectively.

For $P_{cs}(4338)^0$, $\Gamma(\Lambda J/\Psi)$: $\Gamma(\Lambda_c \overline{D}_s) = 3.0$ For $P_{cs}(4457)^0$, $\Gamma(\Lambda_c \overline{D}_s^*)$: $\Gamma(\Xi_c \overline{D}^*)$ $\Gamma(\Lambda J/\Psi) = 2.3:1.1:1.0$ The widths of J=5/2 state, the lighest J=3/2 state, and the lighest J=1/2 state are narrow.

$I(J^P) = 1(\frac{5}{2})$	$\Sigma_c^* \bar{D}_s^*$	$\Xi_c^* \bar{D}^*$	$\Sigma^* J/\psi$									Γ_{sum}
4614.2	(10.2, -)	(11.6, -)	(100.0, 20.6)									20.6
4575.0	(89.8, -)	(21.8,-)	(0.0,0.0)									0.0
$\overline{I(J^P)} = 1(\frac{3}{2})$	$\Sigma_c^* \bar{D_s^*}$	$\Sigma_c^* \bar{D_s}$	$\Sigma_c D_s^*$	$\Xi_c^* \bar{D^*}$	$\Xi_c^* \bar{D}$	$\Xi_c' \bar{D^*}$	$\Xi_c \bar{D^*}$	$\Sigma^* J/\psi$	$\Sigma^*\eta_c$	$\Sigma J/\psi$		Γ_{sum}
4633.1	(18.8, 0.6)	(1.3, 0.3)	(6.9, 1.1)	(23.4, -)	(1.3, 0.5)	(6.7, 1.8)	(0.0, 0.0)	(35.5, 7.8)	(8.0, 2.3)	(0.0, 0.0)		14.4
4604.2	(7.3, -)	(11.1, 2.3)	(2.0, 0.2)	(8.0, -)	(11.4, 4.1)	(1.5, 0.3)	(0.0, 0.0)	(64.3, 12.8)	(6.7, 1.9)	(0.0, 0.0)		21.6
4565.4	(72.4,-)	(3.9, 0.7)	(3.1, -)	(15.5, -)	(1.1, 0.3)	(0.9, -)	(7.9, 2.9)	(0.0, 0.0)	(0.1, 0.0)	(3.2, 0.9)		4.8
4512.5	(0.3, -)	(0.2, 0.0)	(72.1, -)	(0.0, -)	(0.1, -)	(18.2, -)	(11.0, 2.6)	(0.0, 0.0)	(0.0, 0.0)	(2.0, 0.5)		3.1
4480.7	(0.0, -)	(7.5, -)	(7.1, -)	(0.0, -)	(10.7, -)	(5.9, -)	(0.0, 0.0)	(0.2, -)	(85.0, 16.9)	(0.0, 0.0)		17.0
4436.6	(0.6, -)	(15.0, -)	(8.3, -)	(0.2, -)	(2.8, -)	(2.7, -)	(22.0,-)	(0.0, -)	(0.1, 0.0)	(53.9, 12.2)		12.2
4387.5	(0.6, -)	(61.1, -)	(0.5, -)	(0.1, -)	(14.3, -)	(0.1, -)	(0.7, -)	(0.0, -)	(0.0, 0.0)	(40.8, 7.7)		7.7
$I(J^P) = 1(\frac{1}{2})$	$\Sigma_c^* \bar{D_s^*}$	$\Sigma_c \bar{D_s^*}$	$\Sigma_c \bar{D_s}$	$\Xi_c^* \bar{D^*}$	$\Xi_c' \bar{D^*}$	$\Xi_c' \bar{D}$	$\Xi_c \bar{D^*}$	$\Xi_c \bar{D}$	$\Sigma^* J/\psi$	$\Sigma\eta_c$	$\Sigma J/\psi$	Γ_{sum}
4712.0	(35.2, 5.9)	(0.3, 0.1)	(0.0, 0.0)	(37.1, 10.4)	(0.3, 0.1)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(23.0, 6.0)	(0.0, 0.0)	(0.0, 0.0)	22.6
4630.9	(1.3, 0.0)	(27.9, 4.3)	(0.0, 0.0)	(1.8, -)	(28.1, 7.1)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(44.1, 9.6)	(0.0, 0.0)	(0.0, 0.0)	21.1
4539.9	(36.0, -)	(8.3, -)	(2.1, 0.5)	(10.6, -)	(5.0, -)	(0.1, 0.0)	(21.4, 6.6)	(0.9, 0.5)	(0.7, 0.1)	(0.6, 0.2)	(9.2, 2.6)	10.5
4523.0	(6.6, -)	(11.6, -)	(20.0, 4.0)	(1.3, -)	(7.1, -)	(22.4, 7.8)	(0.5, 0.1)	(0.0, 0.0)	(32.2, 3.8)	(0.0, 0.0)	(0.3, 0.1)	15.8
4453.3	(9.8, -)	(47.3, -)	(0.4, 0.1)	(2.4, -)	(11.1, -)	(0.1, 0.0)	(2.8, -)	(6.9, 3.0)	(0.0, -)	(2.9, 0.9)	(25.5, 6.0)	10.0
4420.2	(8.2,-)	(2.5, -)	(12.8, -)	(2.3, -)	(0.7, -)	(3.2, -)	(12.0, -)	(9.3, 3.5)	(0.0, -)	(18.8, 5.5)	(34.4, 7.4)	16.3
4362.6	(0.2, -)	(1.0, -)	(30.0, -)	(0.0, -)	(0.3, -)	(7.1,-)	(4.7, -)	(19.0, 4.0)	(0.0, -)	(9.6, 2.5)	(30.5, 5.0)	11.5
4262.8	(0.0,-)	(1.1,-)	(34.5, -)	(0.1, -)	(0.2, -)	(8.5, -)	(0.2, -)	(5.5,-)	(0.0,-)	(68.1, 12.7)	(0.1, -)	12.7

Rearrangement decay widths for the I = 1, Y = 0 nnsc \bar{c} states in units of MeV.

The light J=5/2 should be a narrow one, which can be searched for in $\Lambda \pi J/\Psi$ channel.

$I(J^P) = \frac{1}{2}(\frac{5}{2})$	$\Omega_c^* \bar{D}^*$	$\Xi_c^* \bar{D}_s^*$	$\Xi^* J/\psi$									Γ_{sum}
4671.2	(12.1,-)	(10.6, -)	(100.0.11.5)									11.5
4633.0	(87.9,-)	(22.7, -)	(0.0,0.0)									0.0
$\overline{I(J^P)} = \frac{1}{2} \left(\frac{3}{2}^{-}\right)$	$\Omega_c^* \bar{D^*}$	$\Omega_c^* \bar{D}$	$\Omega_c D^*$	$\Xi_c^* \bar{D_s^*}$	$\Xi_c^* \bar{D_s}$	$\Xi_c' \bar{D_s^*}$	$\Xi_c \bar{D_s^*}$	$\Xi^* J/\psi$	$\Xi^*\eta_c$	$\Xi J/\psi$		Γ_{sum}
4685.7	(21.8,-)	(0.5, 0.1)	(7.0,-)	(17.5, -)	(0.5, 0.2)	(7.3,-)	(0.0, 0.0)	(46.0, 6.1)	(7.3, 1.7)	(0.0, 0.0)		8.0
4659.3	(11.5,-)	(11.9, 1.1)	(0.9, -)	(10.3, -)	(11.5, 2.9)	(1.2,-)	(0.0, 0.0)	(53.7, 5.2)	(9.2, 2.0)	(0.0, 0.0)		11.2
4621.2	(65.0, -)	(4.7, -)	(4.5, -)	(19.0, -)	(1.1, 0.1)	(1.0, -)	(6.8, 1.7)	(0.0, -)	(0.1, 0.0)	(3.4, 0.9)		2.6
4563.3	(0.4,-)	(0.7, -)	(72.9, -)	(0.2, -)	(0.1, -)	(18.0, -)	(10.5, -)	(0.0,-)	(0.0, 0.0)	(1.5, 0.3)	$\mathbf{>}$	0.3
4535.9	(0.0,-)	(12.5, -)	(5.8, -)	(0.0, -)	(8.9, -)	(6.9, -)	(0.0, -)	(0.2, -)	(83.2, 6.8)	(0.1, 0.0)		6.8
4492.7	(0.6, -)	(11.0, -)	(8.5, -)	(0.1, -)	(3.7, -)	(1.6, -)	(23.2, -)	(0.0, -)	(0.1, -)	(56.0, 9.1)		9.1
4444.0	(0.6, -)	(58.7, -)	(0.5, -)	(0.2, -)	(15.8, -)	(0.2, -)	(1.0,-)	(0.0, -)	(0.0, -)	(39.0, 3.9)		3.9
$I(J^P) = \frac{1}{2}(\frac{1}{2})$	$\Omega_c^* \bar{D^*}$	$\Omega_c \bar{D^*}$	$\Omega_c ar{D}$	$\Xi_c^* \bar{D_s^*}$	$\Xi_c' \bar{D_s^*}$	$\Xi_c' \bar{D_s}$	$\Xi_c \bar{D_s^*}$	$\Xi_c \bar{D_s}$	$\Xi^* J/\psi$	$\Xi\eta_c$	$\Xi J/\psi$	Γ_{sum}
4764.2	(36.8,-)	(0.1, 0.0)	(0.0, 0.0)	(34.9, 3.2)	(0.1, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(26.1, 5.2)	(0.0, 0.0)	(0.0, 0.0)	8.5
4682.5	(2.9,-)	(27.2, -)	(0.1, 0.0)	(2.2,-)	(27.2, -)	(0.1, 0.1)	(0.0, 0.0)	(0.0, 0.0)	(44.0, 5.7)	(0.0, 0.0)	(0.0, 0.0)	5.7
4593.0	(39.6, -)	(15.0, -)	(0.1, 0.0)	(9.0, -)	(1.5, -)	(1.0, 0.3)	(21.1, 2.8)	(0.8, 0.4)	(0.4, -)	(0.6, 0.2)	(10.3, 2.4)	6.1
4573.0	(0.7,-)	(7.2,-)	(23.4, 1.4)	(4.2,-)	(10.7, -)	(21.0, 4.3)	(0.3, -)	(0.0, 0.0)	(29.4, -)	(0.0, 0.0)	(0.3, 0.1)	5.7
4503.7	(7.7,-)	(46.3, -)	(0.8, -)	(2.2, -)	(12.3, -)	(0.2, -)	(2.4, -)	(5.0, 1.6)	(0.0, -)	(2.6, 0.7)	(31.2, 5.4)	7.7
4476.4	(9.1,-)	(1.4, -)	(12.2, -)	(2.8, -)	(0.3, -)	(3.0, -)	(12.8, -)	(10.2, 2.6)	(0.0, -)	(20.5, 5.0)	(30.2, 4.4)	12.0
4413.3	(0.4, -)	(1.5, -)	(28.6, -)	(0.1, -)	(0.3, -)	(7.6, -)	(4.9, -)	(20.0, -)	(0.0, -)	(9.4, 1.9)	(28.0, -)	1.9
4318.1	(0.0,-)	(1.2,-)	(34.8, -)	(0.1, -)	(0.3, -)	(8.8, -)	(0.1, -)	(5.7, -)	(0.0,-)	(66.8, 5.3)	(0.1,-)	5.3

Rearrangement decay widths for the $I = \frac{1}{2}, Y = -1 \ ssnc\bar{c}$ states in units of MeV.

The lighest state with spin 1/2 has mass around 4.3 GeV.

The widths of the light J=5/2 and the fourth highest J=3/2 state are narrow.

20

Results for $sssc\overline{c}$

	0	J		,		
$J = 0(\frac{5}{2}^{-})$	$\Omega_c^* \bar{D}_s^*$	$\Omega J/\psi$				Γ_{sum}
4728.2	(11.1,-)	(100.0, -)				0.0
$J = 0(\frac{3}{2})$	$\Omega^*_c \bar{D^*_s}$	$\Omega_c^* ar{D_s}$	$\Omega_c \bar{D_s^*}$	$\Omega J/\psi$	$\Omega\eta_c$	Γ_{sum}
4738.9	(15.4,-)	(0.1, 0.0)	(7.5, -)	(6.1, -)	(58.3, 9.4)	9.4
4713.8	(14.2,-)	(11.6, -)	(0.6, -)	(12.4, -)	(41.5, 5.7)	5.7
4590.8	(0.0,-)	(10.5, -)	(6.7, -)	(81.5, -)	(0.2, -)	0.0
$J = (\frac{1}{2})^{-}$	$\Omega_c^* \bar{D_s^*}$	$\Omega_c \bar{D_s^*}$	$\Omega_c ar{D_s}$	$\Omega J/\psi$		Γ_{sum}
4816.6	(34.5,-)	(0.0, 0.0)	(0.0, 0.0)	(29.5, 3.5)		3.5
4734.0	(3.4,-)	(26.4, -)	(0.2, 0.1)	(43.3, -)		0.1
4622.8	(2.8,-)	(10.6, -)	(22.0, -)	(27.1, -)		0.0
	10					

The lightest J=1/2, the lightest J=3/2, and the J=5/2 states should all be stable and can be searched for in the $\Xi^0 \pi^- J/\psi$ channel.

Rearrangement decay widths for the $I = 0, Y = -2 \ ssc\bar{c}$ states in units of MeV.

- ♦ $P_c(4312)^+, P_c(4337)^+, P_c(4440)^+, P_c(4457)^+$ can be assigned as the pantaquark states with $I = 1/2, J^P = 3/2^-, 1/2^-, 1/2^-, 3/2^-$, respectively.
- ♦ P_{cs} (4338)⁰, P_{cs} (4459)⁰ can be assigned as the I = 0, J^P = 1/2⁻, 1/2⁻ pantaquark states, respectively.
- There may also be two extremely narrow states in $SSRC\overline{C}$ case and three stable states in $SSSC\overline{C}$ case, which can be searched for in future experiments.

Thanks for your attention